Phonon broadening in high entropy alloys
Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, t...
Saved in:
Published in | npj computational materials Vol. 3; no. 1; pp. 1 - 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ
ab initio
calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.
High entropy alloys: Theoretical perspectives on phonons
In contrast to conventional alloys, high entropy alloys possess five or more equiatomic elemental species within a single lattice, resulting in some extraordinary physical properties. All these properties are linked to the lattice vibrations, i.e. phonons, indicating the importance of modelling of phonon excitations and their interactions. A team led by Fritz Körmann at Netherlands’ Delft University of Technology and Yuji Ikeda at Kyoto University in Japan performed first-principles calculations on 12 different refractory alloys to address the key question of how the chemical complexity impacts phonons. Results show that both atomic mass and force constants contribute to the phonon energies, and changes in the vibrational entropy with more elements could be comparable to the configurational entropy. Research into the computationally designed phonon broadening may open an avenue towards tailored high temperature high entropy alloys. |
---|---|
ISSN: | 2057-3960 2057-3960 |
DOI: | 10.1038/s41524-017-0037-8 |