The effects of endogenous interleukin-1 bioactivity on locus coeruleus neurons in response to bacterial and viral substances

In a previous study, we found that microinjection of the cytokine interleukin-1 (IL-1) into the locus coeruleus (LC) increased the electrophysiological activity of LC neurons. To determine if endogenous IL-1 similarly affects the LC, brain IL-1 was induced with lipopolysaccharide (LPS), a substance...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1007; no. 1; pp. 39 - 56
Main Authors Borsody, Mark K., Weiss, Jay M.
Format Journal Article
LanguageEnglish
Published London Elsevier B.V 08.05.2004
Amsterdam Elsevier
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a previous study, we found that microinjection of the cytokine interleukin-1 (IL-1) into the locus coeruleus (LC) increased the electrophysiological activity of LC neurons. To determine if endogenous IL-1 similarly affects the LC, brain IL-1 was induced with lipopolysaccharide (LPS), a substance derived from Gram-negative bacteria. LPS microinjected directly into the LC increased the activity of LC neurons in anesthetized rats, and this effect was blocked by microinfusion of the IL-1 receptor antagonist (IL-1RA) protein into the LC indicating the involvement of IL-1 receptors. Similarly, intraperitoneal (i.p.) LPS injection increased the activity of LC neurons in a dose- and time-related manner that was sensitive to IL-1RA. The change in the activity of LC neurons caused by a single i.p. injection of LPS was surprisingly long-lasting, and evolved over a period of at least 3 weeks. Other microbial substances—namely, peptidoglycan from Gram-positive bacteria and poly-inosine/poly-cytosine (poly(I)/(C)), which resembles RNA viruses—were used to determine the generality of the findings with LPS. Both i.p. peptidoglycan and poly(I)/(C) increased LC activity but with lesser efficacy than LPS. IL-1RA reversed the increase in the activity of LC neurons caused by i.p. peptidoglycan treatment; however, that caused by i.p. Poly(I)/(C) was not diminished by IL-1RA. Thus, the increased activity of LC neurons caused by LPS and peptidoglycan requires IL-1 receptor binding, suggesting the involvement of endogenously-produced IL-1. In contrast, poly(I)/(C) increased the activity of LC neurons but this did not critically involve IL-1 receptors in the LC.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2004.02.011