A phylogenomic study of endosymbiotic bacteria

Endosymbiotic bacteria of aphids, Buchnera aphidicola, and tsetse flies, Wigglesworthia glossinidia, are descendents of free-living gamma-Proteobacteria. The acceleration of sequence evolution in the endosymbiont genomes is here estimated from a phylogenomic analysis of the gamma-Proteobacteria. The...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 21; no. 6; pp. 1110 - 1122
Main Authors Canbäck, Björn, Tamas, Ivica, Andersson, Siv G E
Format Journal Article
LanguageEnglish
Published United States 01.06.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Endosymbiotic bacteria of aphids, Buchnera aphidicola, and tsetse flies, Wigglesworthia glossinidia, are descendents of free-living gamma-Proteobacteria. The acceleration of sequence evolution in the endosymbiont genomes is here estimated from a phylogenomic analysis of the gamma-Proteobacteria. The tree topologies associated with the most highly conserved genes suggest that the endosymbionts form a sister group with Escherichia coli, Salmonella sp., and Yersinia pestis. Our results indicate that deviant tree topologies result from high substitution rates and biased nucleotide patterns, rather than from lateral gene transfer, as previously suggested. A reinvestigation of the relative rate increase in the endosymbiont genomes reveals variability among genes that correlate with host-associated metabolic dependencies. The conclusion is that host-level selection has retarded both the loss of genes and the acceleration of sequence evolution in endocellular symbionts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0737-4038
1537-1719
1537-1719
DOI:10.1093/molbev/msh122