An auto-I/Q calibrated CMOS transceiver for 802.11g

The CMOS transceiver IC exploits the superheterodyne architecture to implement a low-cost RF front-end with an auto-I/Q calibration function for IEEE 802.11g. The transceiver supports I/Q gain and phase mismatch auto tuning mechanisms at both the transmitting and receiving ends, which are able to re...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 40; no. 11; pp. 2187 - 2192
Main Authors Yong-Hsiang Hsieh, Wei-Yi Hu, Shin-Ming Lin, Chao-Liang Chen, Wen-Kai Li, Sao-Jie Chen, Chen, D.J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The CMOS transceiver IC exploits the superheterodyne architecture to implement a low-cost RF front-end with an auto-I/Q calibration function for IEEE 802.11g. The transceiver supports I/Q gain and phase mismatch auto tuning mechanisms at both the transmitting and receiving ends, which are able to reduce the phase mismatch to within 1/spl deg/ and gain mismatch to 0.1dB. Implemented in a 0.25 /spl mu/m CMOS process with 2.7 V supply voltage, the transceiver delivers a 5.1 dB receiver cascade noise figure, 7 dBm transmit, and a 1 dB compression point.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2005.857348