Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries

Porous Li4Ti5O12 nanoclusters with high surface area are synthesized by a facile solution-based method followed by low-temperature calcination. The Li4Ti5O12 nanoclusters present the key characteristics needed to serve as high-performance negative electrodes for lithium ion batteries, including nano...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 248; pp. 265 - 272
Main Authors Sun, Li, Wang, Jiaping, Jiang, Kaili, Fan, Shoushan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Porous Li4Ti5O12 nanoclusters with high surface area are synthesized by a facile solution-based method followed by low-temperature calcination. The Li4Ti5O12 nanoclusters present the key characteristics needed to serve as high-performance negative electrodes for lithium ion batteries, including nano-sized dimension of the Li4Ti5O12 clusters (50-100 nm) for short ion and electron transfer path, and high surface area (142 m2 g-1) with mesoporosity (pore diameter 2-6 nm) for easy access to the electrolyte and efficient ion transport. Based on these characteristics, the Li4Ti5O12 electrode delivers an initial capacity of 173 mAh g-1 at the rate of 0.5 C, comparable to its theoretical capacity. Excellent cycling stability at high rates is achieved in the Li4Ti5O12 electrode, offering potential to serve as a negative electrode material for high rate lithium ion battery applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2013.09.041