Impact of BCR-ABL mutations on patients with chronic myeloid leukemia

Therapies that target BCR-ABL in chronic myeloid leukemia, including imatinib, dasatinib and nilotinib, have dramatically improved patient outcome. BCR-ABL mutations, however, contribute to treatment resistance by disrupting drug contact sites or causing conformational changes thus making contact si...

Full description

Saved in:
Bibliographic Details
Published inCell cycle (Georgetown, Tex.) Vol. 10; no. 2; pp. 250 - 260
Main Authors Hochhaus, Andreas, Rosée, Paul La, Müller, Martin C., Ernst, Thomas, Cross, Nicholas C.P.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 15.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Therapies that target BCR-ABL in chronic myeloid leukemia, including imatinib, dasatinib and nilotinib, have dramatically improved patient outcome. BCR-ABL mutations, however, contribute to treatment resistance by disrupting drug contact sites or causing conformational changes thus making contact sites inaccessible. Clinical data indicate that developing BCR-ABL mutations during imatinib treatment is predictive for shorter progression-free survival, and that outcomes may depend on mutation type or location. In vitro, dasatinib and nilotinib inhibit most imatinib-resistant BCR-ABL mutations, except for T315I. In clinical studies, other mutations associated with treatment resistance include V299L, T315A, and F317I/L for dasatinib and Y253F/H, E255K/V, and F359C/V for nilotinib. Evaluating patients with clinical signs of resistance for BCR-ABL mutations is an important component of disease monitoring, potentially facilitating selection of subsequent therapy. First-line treatment with dasatinib or nilotinib instead of imatinib may reduce emergence of resistance but novel agents are needed to overcome the problematic T315I mutation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1538-4101
1551-4005
DOI:10.4161/cc.10.2.14537