Novel electrical switching behaviour and logic in carbon nanotube Y-junctions

Carbon-nanotube-based electronics offers significant potential as a nanoscale alternative to silicon-based devices for molecular electronics technologies. Here, we show evidence for a dramatic electrical switching behaviour in a Y-junction carbon-nanotube morphology. We observe an abrupt modulation...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 4; no. 9; pp. 663 - 666
Main Authors Bandaru, P. R, Daraio, C, Jin, S, Rao, A. M
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.09.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Carbon-nanotube-based electronics offers significant potential as a nanoscale alternative to silicon-based devices for molecular electronics technologies. Here, we show evidence for a dramatic electrical switching behaviour in a Y-junction carbon-nanotube morphology. We observe an abrupt modulation of the current from an on- to an off-state, presumably mediated by defects and the topology of the junction. The mutual interaction of the electron currents in the three branches of the Y-junction is shown to be the basis for a potentially new logic device. This is the first time that such switching and logic functionalities have been experimentally demonstrated in Y-junction nanotubes without the need for an external gate. A class of nanoelectronic architecture and functionality, which extends well beyond conventional field-effect transistor technologies, is now possible.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat1450