Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities

Cerium oxide nanoparticles (CeO 2 NPs) were synthesized using Aspergillus niger culture filtrate. The mycosynthesized CeO 2 NPs were characterized by UV–Visible (UV–Vis), Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Micro Raman, Thermogravimetric/Differential Thermal Analysis (TG/DTA...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanostructure in chemistry Vol. 5; no. 3; pp. 295 - 303
Main Authors Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S., Arumugam, A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cerium oxide nanoparticles (CeO 2 NPs) were synthesized using Aspergillus niger culture filtrate. The mycosynthesized CeO 2 NPs were characterized by UV–Visible (UV–Vis), Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Micro Raman, Thermogravimetric/Differential Thermal Analysis (TG/DTA), Photoluminescence, and Transmission Electron Microscopy (TEM) analyses. UV–Vis spectrum exhibited a corresponding absorption peak for CeO 2 NPs at 296 nm, and the functional groups present in the fungal filtrate responsible for the synthesis of NPs were analyzed by FT-IR. The further characterization of the mycosynthesized CeO 2 NPs revealed particles of the cubic structure and spherical shape, with the particle sizes ranging from 5 to 20 nm. The antibacterial activity of CeO 2 NPs was examined in respect of two Gram-positive (G+) bacteria ( Streptococcus pneumoniae , Bacillus subtilis ) and two Gram-negative (G−) bacteria ( Proteus vulgaris, Escherichia coli ) by disk diffusion method. The test results for CeO 2 NPs at a concentration of 10 mg/mL showed higher activities on the zone of inhibition of up to 10.67 ± 0.33 and 10.33 ± 0.33 mm against Streptococcus pneumonia and Bacillus subtilis , respectively, The CeO 2 NPs caused 100 % mortality on first instar of Aedes aegypti at 0.250 mg/L concentration after 24-h exposure. The mycosynthesis of CeO 2 NPs is a simple, cost-effective and eco-friendly approach and it will also potentially helpful to control pathogenic bacteria and dengue vector. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2008-9244
2193-8865
DOI:10.1007/s40097-015-0161-2