Biodegradable Materials for Bone Repairs: A Review
With attractive research and development of biomaterials, more and more opportunities have been brought to the treatments of human tissue repairs. The implant is usually no need to exist in the body accompanied with the recovery or regeneration of the tissue lesions, and the long-term effect of exot...
Saved in:
Published in | Journal of materials science & technology Vol. 29; no. 6; pp. 503 - 513 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | With attractive research and development of biomaterials, more and more opportunities have been brought to the treatments of human tissue repairs. The implant is usually no need to exist in the body accompanied with the recovery or regeneration of the tissue lesions, and the long-term effect of exotic substance to human body should be reduced as lower as possible. For this purpose, biodegradable materials, including polymers, magnesium alloys and ceramics, have attracted much attention for medical applications due to their biodegradable characters in body environment. This paper in turn introduces these three different types of widely studied biodegradable materials as well as their advantages as implants in applications for bone repairs. Relevant history and research progresses are summarized. |
---|---|
Bibliography: | 21-1315/TG Biomaterial; Biodegradable; Polymer; Magnesium; Ceramie; Bone repair With attractive research and development of biomaterials, more and more opportunities have been brought to the treatments of human tissue repairs. The implant is usually no need to exist in the body accompanied with the recovery or regeneration of the tissue lesions, and the long-term effect of exotic substance to human body should be reduced as lower as possible. For this purpose, biodegradable materials, including polymers, magnesium alloys and ceramics, have attracted much attention for medical applications due to their biodegradable characters in body environment. This paper in turn introduces these three different types of widely studied biodegradable materials as well as their advantages as implants in applications for bone repairs. Relevant history and research progresses are summarized. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1005-0302 1941-1162 |
DOI: | 10.1016/j.jmst.2013.03.002 |