A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods

This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary differential equations (SODEs), as well as classic Emden–Fowler equations. The Legendre polynomial is chosen as a basis function of hidden neurons. A...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2018; no. 1; pp. 1 - 24
Main Authors Yang, Yunlei, Hou, Muzhou, Luo, Jianshu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 19.12.2018
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-1847
1687-1839
1687-1847
DOI10.1186/s13662-018-1927-x

Cover

Loading…
Abstract This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary differential equations (SODEs), as well as classic Emden–Fowler equations. The Legendre polynomial is chosen as a basis function of hidden neurons. A single hidden layer Legendre neural network is used to eliminate the hidden layer by expanding the input pattern using Legendre polynomials. The improved extreme learning machine (IELM) algorithm is used for network weights training when solving algebraic equation systems, and several algorithm steps are summed up. Convergence was analyzed theoretically to support the proposed method. In order to demonstrate the performance of the method, various testing problems are solved by the proposed approach. A comparative study with other approaches such as conventional methods and latest research work reported in the literature are described in detail to validate the superiority of the method. Experimental results show that the proposed Legendre network with IELM algorithm requires fewer neurons to outperform the numerical algorithm in the latest literature in terms of accuracy and execution time.
AbstractList This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary differential equations (SODEs), as well as classic Emden–Fowler equations. The Legendre polynomial is chosen as a basis function of hidden neurons. A single hidden layer Legendre neural network is used to eliminate the hidden layer by expanding the input pattern using Legendre polynomials. The improved extreme learning machine (IELM) algorithm is used for network weights training when solving algebraic equation systems, and several algorithm steps are summed up. Convergence was analyzed theoretically to support the proposed method. In order to demonstrate the performance of the method, various testing problems are solved by the proposed approach. A comparative study with other approaches such as conventional methods and latest research work reported in the literature are described in detail to validate the superiority of the method. Experimental results show that the proposed Legendre network with IELM algorithm requires fewer neurons to outperform the numerical algorithm in the latest literature in terms of accuracy and execution time.
Abstract This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary differential equations (SODEs), as well as classic Emden–Fowler equations. The Legendre polynomial is chosen as a basis function of hidden neurons. A single hidden layer Legendre neural network is used to eliminate the hidden layer by expanding the input pattern using Legendre polynomials. The improved extreme learning machine (IELM) algorithm is used for network weights training when solving algebraic equation systems, and several algorithm steps are summed up. Convergence was analyzed theoretically to support the proposed method. In order to demonstrate the performance of the method, various testing problems are solved by the proposed approach. A comparative study with other approaches such as conventional methods and latest research work reported in the literature are described in detail to validate the superiority of the method. Experimental results show that the proposed Legendre network with IELM algorithm requires fewer neurons to outperform the numerical algorithm in the latest literature in terms of accuracy and execution time.
ArticleNumber 469
Author Hou, Muzhou
Luo, Jianshu
Yang, Yunlei
Author_xml – sequence: 1
  givenname: Yunlei
  surname: Yang
  fullname: Yang, Yunlei
  organization: School of Mathematics and Statistics, Central South University
– sequence: 2
  givenname: Muzhou
  orcidid: 0000-0001-6658-2187
  surname: Hou
  fullname: Hou, Muzhou
  email: houmuzhou@sina.com
  organization: School of Mathematics and Statistics, Central South University
– sequence: 3
  givenname: Jianshu
  surname: Luo
  fullname: Luo, Jianshu
  organization: College of Arts and Science, National University of Defense Technology
BookMark eNp9UctuFDEQHKEgkQQ-gJslzgO2x-vHMYp4RFqJC5wtj92e9TJjJ7Y3bI75c7wZEAgJTt3qriqVqi66s5gidN1rgt8SIvm7QgbOaY-J7Imioj8-684Jl6InkomzP_YX3UUpe4ypYlKed49XKKZ7mFFYbnNbHIJjzbAAmsHkGOKEFmN3IQIy85RyqLsFhYhKmu9Pz5RdiCY_IBe8hwyxBjMjuDuYGlIsaHxAW5ggugwowiG3Z4T6PeVvaIG6S6687J57Mxd49XNedl8_vP9y_anffv54c3217S2jm9pvhHHApR-p44JaPmK-wYb7YfSDICCUZ4rQgdiBESFaBsZxrEBi6q2i1g-X3c2q65LZ69sclmZbJxP00yHlSZtcg51Bu0Hg0RlwTG2YosowqkYF2GIusR9w03qzarXM7g5Qqt6nQ47NvqZkI9kwUMIaSqwom1MpGby2oT7lUrMJsyZYn7rTa3e6dadP3eljY5K_mL_8_o9DV05p2DhB_u3p36QfXASw1w
CitedBy_id crossref_primary_10_1007_s10614_025_10849_9
crossref_primary_10_1007_s00500_022_07529_3
crossref_primary_10_1016_j_matcom_2024_12_004
crossref_primary_10_3390_bioengineering10020229
crossref_primary_10_1016_j_neucom_2021_06_015
crossref_primary_10_1016_j_physa_2023_128887
crossref_primary_10_1016_j_neucom_2019_12_099
crossref_primary_10_11948_20200377
crossref_primary_10_1016_j_neucom_2021_01_012
crossref_primary_10_1103_PhysRevAccelBeams_23_074601
crossref_primary_10_1142_S0129183124502437
crossref_primary_10_1080_0952813X_2023_2242356
crossref_primary_10_1080_13873954_2021_1909069
crossref_primary_10_1007_s13042_021_01277_w
crossref_primary_10_1115_1_4051530
crossref_primary_10_1007_s42967_024_00389_8
crossref_primary_10_1038_s41598_024_84695_4
crossref_primary_10_1007_s00500_022_07745_x
crossref_primary_10_21597_jist_1230287
crossref_primary_10_1007_s00366_023_01830_x
crossref_primary_10_3390_math8020152
crossref_primary_10_1007_s43926_024_00060_x
crossref_primary_10_1007_s11063_021_10543_5
crossref_primary_10_1063_5_0046181
crossref_primary_10_3389_fncom_2023_1120516
crossref_primary_10_1016_j_amc_2024_128557
crossref_primary_10_1016_j_camwa_2024_04_005
crossref_primary_10_4236_jamp_2022_1010211
crossref_primary_10_1002_for_2663
crossref_primary_10_1186_s13662_022_03718_4
crossref_primary_10_1115_1_4046892
crossref_primary_10_3390_s24237785
crossref_primary_10_1016_j_dsp_2021_103003
crossref_primary_10_1007_s11063_020_10232_9
crossref_primary_10_1007_s11431_022_2118_9
crossref_primary_10_1186_s13662_019_2131_3
crossref_primary_10_3390_sym12060876
Cites_doi 10.1016/j.amc.2006.05.068
10.1016/j.chaos.2017.06.030
10.1109/72.712178
10.12677/AAM.2015.44042
10.1016/j.amc.2014.08.085
10.1007/s00521-016-2701-1
10.1016/j.neucom.2005.12.126
10.1080/00207160.2017.1291932
10.1016/j.ejor.2003.09.039
10.1016/j.neucom.2004.06.009
10.1016/S0893-6080(00)00013-7
10.1016/S0045-7949(03)00314-6
10.1016/j.neucom.2008.12.004
10.1162/neco.1993.5.2.305
10.1016/j.asoc.2013.10.013
10.1016/S0893-6080(00)00095-2
10.1109/TNN.2005.857945
10.1007/s00521-016-2598-8
10.1016/j.amc.2016.07.021
10.1007/s00521-018-3490-5
10.1016/0893-6080(94)90031-0
10.1016/j.asoc.2010.07.016
10.1016/j.simpat.2009.10.007
10.1016/S1365-1609(03)00042-X
10.1162/neco.1989.1.2.281
10.1023/A:1012784129883
10.1016/j.neucom.2014.11.058
10.1016/j.asoc.2015.10.069
10.1016/j.nonrwa.2007.08.017
10.1007/s00521-018-3450-0
10.1007/s11063-018-9911-8
10.1016/S0045-7949(03)00007-5
10.1007/s00521-016-2642-8
10.1007/s00521-016-2655-3
10.1016/j.advengsoft.2009.06.008
10.1109/31.7600
10.1016/S0893-6080(00)00035-6
10.1007/s10489-016-0882-z
10.1007/s00521-011-0604-8
10.1016/0895-7177(94)90095-7
10.1109/ICNN.1993.298623
10.1016/j.asoc.2012.05.014
10.1140/epjp/i2018-11917-0
10.1109/TNN.2010.2055888
10.1016/S0045-7949(96)00082-X
10.1007/s00521-016-2623-y
10.1016/j.neucom.2010.12.026
10.1016/0895-7177(94)00160-X
10.3844/jmssp.2017.1.13
ContentType Journal Article
Copyright The Author(s) 2018
Advances in Difference Equations is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: Advances in Difference Equations is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-018-1927-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 24
ExternalDocumentID oai_doaj_org_article_d370bdaed4954929a429b9e0c0680f30
10_1186_s13662_018_1927_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61375063
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c425t-57ade68fb2d672c6b0650a6f3bf371e79f491231c34177192ad609e802fc92cf3
IEDL.DBID 40G
ISSN 1687-1847
1687-1839
IngestDate Wed Aug 27 01:13:55 EDT 2025
Fri Jul 25 12:18:01 EDT 2025
Thu Apr 24 22:52:49 EDT 2025
Tue Jul 01 03:30:06 EDT 2025
Fri Feb 21 02:36:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Legendre neural network
Legendre polynomial
ODEs
Classic Emden–Fowler equation
Improved extreme learning machine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-57ade68fb2d672c6b0650a6f3bf371e79f491231c34177192ad609e802fc92cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6658-2187
OpenAccessLink https://link.springer.com/10.1186/s13662-018-1927-x
PQID 2158433214
PQPubID 237355
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_d370bdaed4954929a429b9e0c0680f30
proquest_journals_2158433214
crossref_citationtrail_10_1186_s13662_018_1927_x
crossref_primary_10_1186_s13662_018_1927_x
springer_journals_10_1186_s13662_018_1927_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-19
PublicationDateYYYYMMDD 2018-12-19
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-19
  day: 19
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References WangP.YuanH.LiuP.Finite difference method and implicit Runge–Kutta method for solving Burgers equationJ. Changchun Univ. Sci. Technol.2013361158160
ToppingB.H.V.KhanA.I.BahreininejadA.Parallel training of neural networks for finite element mesh decompositionComput. Struct.19976346937070899.7352110.1016/S0045-7949(96)00082-X
ManevitzL.BitarA.GivoliD.Neural network time series forecasting of finite-element mesh adaptationNeurocomputing20056344746310.1016/j.neucom.2004.06.009
LagarisI.E.LikasA.C.Artificial neural networks for solving ordinary and partial differential equationsIEEE Trans. Neural Netw.199895987100010.1109/72.712178
HouM.LiuT.YangY.A new hybrid constructive neural network method for impacting and its application on tungsten price predictionAppl. Intell.2017471284310.1007/s10489-016-0882-z
MallS.ChakravertyS.Chebyshev neural network based model for solving Lane–Emden type equationsAppl. Math. Comput.201424710011432708241338.65206
WangB.Numerical solution of differential equations and Matlab implementationJ. Tongling Vocat. Tech. Coll.20111039597
EspositoA.MarinaroM.OricchioD.ScarpettaS.Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithmNeural Netw.200013665166510.1016/S0893-6080(00)00035-6
Li, S.: Finite difference method for ordinary differential equations and its simple application. Anhui University (2010)
YazdiH.S.PakdamanM.ModagheghH.Unsupervised kernel least mean square algorithm for solving ordinary differential equationsNeurocomputing2011742062207110.1016/j.neucom.2010.12.026
HuangG.B.ZhuQ.Y.SiewC.K.Extreme learning machine: theory and applicationsNeurocomputing200670148950110.1016/j.neucom.2005.12.126
HouM.HanX.Multivariate numerical approximation using constructive L-2(R) RBF neural networkNeural Comput. Appl.2012211253410.1007/s00521-011-0604-8
DaiH.Matrix Theory2001BeijingScience Press
Zuniga-AguilarC.J.Romero-UgaldeH.M.Gomez-AguilarJ.F.Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networksChaos Solitons Fractals201710338240336898341375.3411010.1016/j.chaos.2017.06.030
ParkJ.SandbergI.W.Approximation and radial basis function networksNeural Comput.1993530531610.1162/neco.1993.5.2.305
MoodyJ.E.DarkenC.Fast learning in networks of locally tuned processing unitsNeural Comput.19891228129410.1162/neco.1989.1.2.281
MallS.ChakravertyS.Application of Legendre neural network for solving ordinary differential equationsAppl. Soft Comput.20164334735610.1016/j.asoc.2015.10.069
AbdullaM.B.CostaA.L.SousaR.L.Probabilistic identification of subsurface gypsum geohazards using artificial neural networksNeural Comput. Appl.201829121377139110.1007/s00521-016-2655-3
LiX.OuyangJ.LiQ.RenJ.Integration wavelet neural network for steady convection dominated diffusion problem3rd International Conference on Information and Computing2010109112
HanX.Numerical Analysis2011BeijingHigher Education Press(in Chinese)
LeA.Shooting method in the application of ordinary difference equations boundary value problemSci. Mosaic20115247249
ZiemianskiL.Hybrid neural network finite element modeling of wave propagation in infinite domainsComput. Struct.2003818–111099110910.1016/S0045-7949(03)00007-5
MeadeA.J.Jr.FernandezA.A.The numerical solution of linear ordinary differential equations by feedforward neural networksMath. Comput. Model.199419l2512841750807.6507910.1016/0895-7177(94)90095-7
DwivediA.K.Artificial neural network model for effective cancer classification using microarray gene expression dataNeural Comput. Appl.201829121545155410.1007/s00521-016-2701-1
FrankeR.Scattered data interpolation: tests of some methodsMath. Comput.1982381571812006372960476.65005
DengC.DaiZ.JiangS.Higher-order explicit index Runge–Kutta methodJ. Beijing Univ. Chem. Technol.2013405123127
KorogluS.SergeantP.UmurkanN.Comparison of analytical, finite element and neural network methods to study magnetic shieldingSimul. Model. Pract. Theory201018220621610.1016/j.simpat.2009.10.007
LiM.ChenH.ZhangZ.Fifth-order Adams scheme for solving first order ODEsJ. Shaoguan Univ.201334121417
JiaoY.PanX.ZhaoZ.Learning sparse partial differential equations for vector-valued imagesNeural Comput. Appl.201829111205121610.1007/s00521-016-2623-y
WangY.LiuM.BaoZ.Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis in power systemsNeural Comput. Appl.201810.1007/s00521-018-3490-5
HouM.HanX.Constructive approximation to multivariate function by decay RBF neural networkIEEE Trans. Neural Netw.20102191517152310.1109/TNN.2010.2055888
TakeuchiJ.KosugiY.Neural network representation of the finite element methodNeural Netw.19947238939510.1016/0893-6080(94)90031-0
ZhangQ.Single-step method for solving the initial value problem of ordinary differential equationsBull. Sci. Tech.201228279
DengJ.YueZ.Q.ThamL.G.ZhuH.H.Pillar design by combining finite element methods, neural networks and reliability: a case study of the Feng Huangshan copper mine, ChinaInt. J. Rock Mech. Min. Sci.200340458559910.1016/S1365-1609(03)00042-X
ChaharborjS.S.ChaharborjS.S.MahmoudiY.Study of fractional order integro-differential equations by using Chebyshev neural networkJ. Math. Stat.201713111310.3844/jmssp.2017.1.13
HeS.ReifK.UnbehauenR.Multilayer networks for solving a class of partial differential equationsNeural Netw.200013338539610.1016/S0893-6080(00)00013-7
BeltzerA.I.SatoT.Neural classification of finite elementsComput. Struct.20038124–252331233510.1016/S0045-7949(03)00314-6
XiL.HouM.LeeM.A new constructive neural network method for noise processing and its application on stock market predictionAppl. Soft Comput.201415576610.1016/j.asoc.2013.10.013
Mai-DuyN.Tran-CongT.Approximation of function and its derivatives using radial basis function networksNeural Netw.20032731972201024.65012
TsoulosI.G.GavrilisD.GlavasE.Solving differential equations with constructed neural networksNeurocomputing20097210–122385239110.1016/j.neucom.2008.12.004
Mai-DuyN.Tran-CongT.Numerical solution of differential equations using multiquadric radial basis function networksNeural Netw.20011421851991047.7610110.1016/S0893-6080(00)00095-2
AartsL.P.VeerP.V.Neural network method for partial differential equationsNeural Process. Lett.20011432612710985.6804810.1023/A:1012784129883
ManganaroG.ArenaP.FortunaL.Cellular neural networks: chaosComplexity and VLSI Processing1999BerlinSpringer44450976.68124
MallS.ChakravertyS.Application of Legendre neural network for solving ordinary differential equationsAppl. Comput.201643347356
XuL.Y.HuiW.ZengZ.Z.The algorithm of neural networks on the initial value problems in ordinary differential equationsIndustrial Electronics and Applications. 2007. Iciea 2007. IEEE Conference on2007New YorkIEEE813816
ChowdhuryM.S.H.HashimI.Solutions of Emden–Fowler equations by homotopy-perturbation methodNonlinear Anal., Real World Appl.20091010411524516941154.3430610.1016/j.nonrwa.2007.08.017
SunH.HouM.YangY.Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithmNeural Process. Lett.201810.1007/s11063-018-9911-8
JilaniH.BahreininejadA.AhmadiM.T.Adaptive finite element mesh triangulation using self-organizing neural networksAdv. Eng. Softw.20094011109711031281.7403210.1016/j.advengsoft.2009.06.008
ChaquetJ.M.CarmonaE.Solving differential equations with Fourier series and evolution strategiesAppl. Soft Comput.2012123051306210.1016/j.asoc.2012.05.014
Hernández-TraviesoJ.G.Ravelo-GarcíaA.G.Alonso-HernándezJ.B.Neural networks fusion for temperature forecastingNeural Comput. Appl.201810.1007/s00521-018-3450-0
LiJ.LuoS.QiY.HuangY.Numerical solution of differential equations by radial basis function neural networksProc. Int. Jt Conf. Neural Netw2002773777
RuddK.FerrariS.A constrained integration (CINT) approach to solving partial differential equations using artificial neural networksNeurocomputing201515527728510.1016/j.neucom.2014.11.058
ReidmillerM.BraunH.A direct adaptive method for faster back propagation learning: the RPROP algorithmProceedings of the IEEE International Conference on Neural Networks199358659110.1109/ICNN.1993.298623
HaykinS.Neural Networks: A Comprehensive Foundation2002SingaporePearson Education0828.68103
RostamiF.JafarianA.A new artificial neural network structure for solving high-order linear fractional differential equationsInt. J. Comput. Math.201895352853937505210686984610.1080/00207160.2017.1291932
QiaoJ.ZhangW.Dynamic multi-objective optimization control for wastewater treatment processNeural Comput. Appl.201829111261127110.1007/s00521-016-2642-8
ChuaL.O.YangL.Cellular neural networks: theoryIEEE Trans. Circuits Syst.198835125712729607770663.9402210.1109/31.7600
Zuniga-AguilarC.J.Coronel-EscamillaA.Gomez-AguilarJ.F.New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networksEur. Phys. J. Plus2018133210.1140/epjp/i2018-11917-0
LiuD.Contrast test of predictor-corrector method for fourth-order Adams–Bashforth combination formulaJ. Xichang Coll.20122634346
MeadeA.J.Jr.FernandezA.A.Solution of nonlinear ordinary differential equations by feedforward neural networksMath. Comput. Model.1994209194413026290818.6507710.1016/0895-7177(94)00160-X
PakdamanM.AhmadianA.EffatiS.Solving differential equations of fractional order using an optimization technique based on training artificial neural networkAppl. Math. Comput.2017293819535496551411.65090
MalekA.BeidokhtiR.S.Numerical solution for high order differential equations using a hybrid neural network-optimization methodAppl. Math. Comput.2006183126027122828081105.65340
ArmaghaniD.J.HasanipanahM.MahdiyarA.Airblast prediction through a hybrid genetic algorithm—ANN modelNeural Comput. Appl.201829961962910.1007/s00521-016-2598-8
ArndtO.BarthT.FreislebenB.GrauerM.Approximating a finite element model by neural network prediction for facility optimization in groundwater engineeringEur. J. Oper. Res.200516637697811112.7638010.1016/j.ejor.2003.09.
Z. Huang (1927_CR7) 2015; 4
L. Xi (1927_CR18) 2014; 15
X. Li (1927_CR28) 2010
O. Arndt (1927_CR43) 2005; 166
S. Mall (1927_CR59) 2016; 43
J.M. Chaquet (1927_CR56) 2012; 12
1927_CR10
J. Qiao (1927_CR14) 2018; 29
F. Rostami (1927_CR65) 2018; 95
M. Hou (1927_CR22) 2012; 21
S. He (1927_CR24) 2000; 13
I.E. Lagaris (1927_CR23) 1998; 9
C.J. Zuniga-Aguilar (1927_CR63) 2018; 133
J. Park (1927_CR32) 1993; 5
S. Mall (1927_CR67) 2014; 247
A.I. Beltzer (1927_CR39) 2003; 81
K. Rudd (1927_CR54) 2015; 155
A.J. Meade Jr. (1927_CR48) 1994; 20
L.P. Aarts (1927_CR55) 2001; 14
M. Hou (1927_CR20) 2010; 21
M. Hou (1927_CR17) 2017; 47
Y. Jiao (1927_CR12) 2018; 29
J.G. Hernández-Travieso (1927_CR16) 2018
P. Ramuhalli (1927_CR27) 2005; 16
H. Dai (1927_CR58) 2001
H.S. Yazdi (1927_CR61) 2011; 74
M. Hou (1927_CR21) 2011; 11
N. Mai-Duy (1927_CR25) 2001; 14
C.J. Zuniga-Aguilar (1927_CR64) 2017; 103
J. Takeuchi (1927_CR38) 1994; 7
L.O. Chua (1927_CR26) 1988; 35
H. Sun (1927_CR60) 2018
Y. Wang (1927_CR13) 2018
H. Jilani (1927_CR42) 2009; 40
J.E. Moody (1927_CR30) 1989; 1
N. Mai-Duy (1927_CR35) 2003; 27
S. Mall (1927_CR50) 2016; 43
S.S. Chaharborj (1927_CR68) 2017; 13
A. Malek (1927_CR53) 2006; 183
D.J. Armaghani (1927_CR15) 2018; 29
A. Le (1927_CR9) 2011; 5
L.Y. Xu (1927_CR51) 2007
S. Haykin (1927_CR33) 2002
G. Manganaro (1927_CR36) 1999
J.C. Chedhou (1927_CR37) 2009; 4
B.H.V. Topping (1927_CR40) 1997; 63
J. Li (1927_CR29) 2002
M.S.H. Chowdhury (1927_CR62) 2009; 10
J. Deng (1927_CR45) 2003; 40
Q. Zhang (1927_CR2) 2012; 28
M. Pakdaman (1927_CR66) 2017; 293
A.J. Meade Jr. (1927_CR47) 1994; 19
D. Liu (1927_CR8) 2012; 26
I.G. Tsoulos (1927_CR49) 2009; 72
M. Reidmiller (1927_CR52) 1993
M.B. Abdulla (1927_CR11) 2018; 29
L. Manevitz (1927_CR41) 2005; 63
G.B. Huang (1927_CR57) 2006; 70
A.K. Dwivedi (1927_CR19) 2018; 29
B. Wang (1927_CR3) 2011; 10
M. Li (1927_CR6) 2013; 34
P. Wang (1927_CR4) 2013; 36
A. Esposito (1927_CR31) 2000; 13
C. Deng (1927_CR5) 2013; 40
S. Koroglu (1927_CR44) 2010; 18
L. Ziemianski (1927_CR46) 2003; 81
X. Han (1927_CR1) 2011
R. Franke (1927_CR34) 1982; 38
References_xml – reference: Li, S.: Finite difference method for ordinary differential equations and its simple application. Anhui University (2010)
– reference: ChaharborjS.S.ChaharborjS.S.MahmoudiY.Study of fractional order integro-differential equations by using Chebyshev neural networkJ. Math. Stat.201713111310.3844/jmssp.2017.1.13
– reference: ChowdhuryM.S.H.HashimI.Solutions of Emden–Fowler equations by homotopy-perturbation methodNonlinear Anal., Real World Appl.20091010411524516941154.3430610.1016/j.nonrwa.2007.08.017
– reference: HeS.ReifK.UnbehauenR.Multilayer networks for solving a class of partial differential equationsNeural Netw.200013338539610.1016/S0893-6080(00)00013-7
– reference: JilaniH.BahreininejadA.AhmadiM.T.Adaptive finite element mesh triangulation using self-organizing neural networksAdv. Eng. Softw.20094011109711031281.7403210.1016/j.advengsoft.2009.06.008
– reference: SunH.HouM.YangY.Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithmNeural Process. Lett.201810.1007/s11063-018-9911-8
– reference: ChedhouJ.C.KyamakyaK.Solving stiff ordinary and partial differential equations using analog computing based on cellular neural networksISAST Trans. Comput. Intell. Syst.200942213221
– reference: ManevitzL.BitarA.GivoliD.Neural network time series forecasting of finite-element mesh adaptationNeurocomputing20056344746310.1016/j.neucom.2004.06.009
– reference: WangY.LiuM.BaoZ.Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis in power systemsNeural Comput. Appl.201810.1007/s00521-018-3490-5
– reference: TakeuchiJ.KosugiY.Neural network representation of the finite element methodNeural Netw.19947238939510.1016/0893-6080(94)90031-0
– reference: DengC.DaiZ.JiangS.Higher-order explicit index Runge–Kutta methodJ. Beijing Univ. Chem. Technol.2013405123127
– reference: KorogluS.SergeantP.UmurkanN.Comparison of analytical, finite element and neural network methods to study magnetic shieldingSimul. Model. Pract. Theory201018220621610.1016/j.simpat.2009.10.007
– reference: QiaoJ.ZhangW.Dynamic multi-objective optimization control for wastewater treatment processNeural Comput. Appl.201829111261127110.1007/s00521-016-2642-8
– reference: HaykinS.Neural Networks: A Comprehensive Foundation2002SingaporePearson Education0828.68103
– reference: ChaquetJ.M.CarmonaE.Solving differential equations with Fourier series and evolution strategiesAppl. Soft Comput.2012123051306210.1016/j.asoc.2012.05.014
– reference: DengJ.YueZ.Q.ThamL.G.ZhuH.H.Pillar design by combining finite element methods, neural networks and reliability: a case study of the Feng Huangshan copper mine, ChinaInt. J. Rock Mech. Min. Sci.200340458559910.1016/S1365-1609(03)00042-X
– reference: LiuD.Contrast test of predictor-corrector method for fourth-order Adams–Bashforth combination formulaJ. Xichang Coll.20122634346
– reference: Zuniga-AguilarC.J.Romero-UgaldeH.M.Gomez-AguilarJ.F.Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networksChaos Solitons Fractals201710338240336898341375.3411010.1016/j.chaos.2017.06.030
– reference: HouM.HanX.Constructive approximation to multivariate function by decay RBF neural networkIEEE Trans. Neural Netw.20102191517152310.1109/TNN.2010.2055888
– reference: ChuaL.O.YangL.Cellular neural networks: theoryIEEE Trans. Circuits Syst.198835125712729607770663.9402210.1109/31.7600
– reference: HouM.HanX.Multivariate numerical approximation using constructive L-2(R) RBF neural networkNeural Comput. Appl.2012211253410.1007/s00521-011-0604-8
– reference: ManganaroG.ArenaP.FortunaL.Cellular neural networks: chaosComplexity and VLSI Processing1999BerlinSpringer44450976.68124
– reference: LiX.OuyangJ.LiQ.RenJ.Integration wavelet neural network for steady convection dominated diffusion problem3rd International Conference on Information and Computing2010109112
– reference: ZiemianskiL.Hybrid neural network finite element modeling of wave propagation in infinite domainsComput. Struct.2003818–111099110910.1016/S0045-7949(03)00007-5
– reference: AbdullaM.B.CostaA.L.SousaR.L.Probabilistic identification of subsurface gypsum geohazards using artificial neural networksNeural Comput. Appl.201829121377139110.1007/s00521-016-2655-3
– reference: YazdiH.S.PakdamanM.ModagheghH.Unsupervised kernel least mean square algorithm for solving ordinary differential equationsNeurocomputing2011742062207110.1016/j.neucom.2010.12.026
– reference: ArmaghaniD.J.HasanipanahM.MahdiyarA.Airblast prediction through a hybrid genetic algorithm—ANN modelNeural Comput. Appl.201829961962910.1007/s00521-016-2598-8
– reference: WangB.Numerical solution of differential equations and Matlab implementationJ. Tongling Vocat. Tech. Coll.20111039597
– reference: LagarisI.E.LikasA.C.Artificial neural networks for solving ordinary and partial differential equationsIEEE Trans. Neural Netw.199895987100010.1109/72.712178
– reference: Mai-DuyN.Tran-CongT.Numerical solution of differential equations using multiquadric radial basis function networksNeural Netw.20011421851991047.7610110.1016/S0893-6080(00)00095-2
– reference: ParkJ.SandbergI.W.Approximation and radial basis function networksNeural Comput.1993530531610.1162/neco.1993.5.2.305
– reference: RostamiF.JafarianA.A new artificial neural network structure for solving high-order linear fractional differential equationsInt. J. Comput. Math.201895352853937505210686984610.1080/00207160.2017.1291932
– reference: BeltzerA.I.SatoT.Neural classification of finite elementsComput. Struct.20038124–252331233510.1016/S0045-7949(03)00314-6
– reference: TsoulosI.G.GavrilisD.GlavasE.Solving differential equations with constructed neural networksNeurocomputing20097210–122385239110.1016/j.neucom.2008.12.004
– reference: HuangZ.HuZ.WangC..A study on construction for linear multi-step methods based on Taylor expansionAdv. Appl. Math.20154434335610.12677/AAM.2015.44042
– reference: Mai-DuyN.Tran-CongT.Approximation of function and its derivatives using radial basis function networksNeural Netw.20032731972201024.65012
– reference: JiaoY.PanX.ZhaoZ.Learning sparse partial differential equations for vector-valued imagesNeural Comput. Appl.201829111205121610.1007/s00521-016-2623-y
– reference: DwivediA.K.Artificial neural network model for effective cancer classification using microarray gene expression dataNeural Comput. Appl.201829121545155410.1007/s00521-016-2701-1
– reference: ReidmillerM.BraunH.A direct adaptive method for faster back propagation learning: the RPROP algorithmProceedings of the IEEE International Conference on Neural Networks199358659110.1109/ICNN.1993.298623
– reference: LeA.Shooting method in the application of ordinary difference equations boundary value problemSci. Mosaic20115247249
– reference: MallS.ChakravertyS.Application of Legendre neural network for solving ordinary differential equationsAppl. Soft Comput.20164334735610.1016/j.asoc.2015.10.069
– reference: HouM.HanXH.The multidimensional function approximation based on constructive wavelet RBF neural networkAppl. Soft Comput.20111122173217710.1016/j.asoc.2010.07.016
– reference: MallS.ChakravertyS.Application of Legendre neural network for solving ordinary differential equationsAppl. Comput.201643347356
– reference: XuL.Y.HuiW.ZengZ.Z.The algorithm of neural networks on the initial value problems in ordinary differential equationsIndustrial Electronics and Applications. 2007. Iciea 2007. IEEE Conference on2007New YorkIEEE813816
– reference: ToppingB.H.V.KhanA.I.BahreininejadA.Parallel training of neural networks for finite element mesh decompositionComput. Struct.19976346937070899.7352110.1016/S0045-7949(96)00082-X
– reference: MallS.ChakravertyS.Chebyshev neural network based model for solving Lane–Emden type equationsAppl. Math. Comput.201424710011432708241338.65206
– reference: Hernández-TraviesoJ.G.Ravelo-GarcíaA.G.Alonso-HernándezJ.B.Neural networks fusion for temperature forecastingNeural Comput. Appl.201810.1007/s00521-018-3450-0
– reference: AartsL.P.VeerP.V.Neural network method for partial differential equationsNeural Process. Lett.20011432612710985.6804810.1023/A:1012784129883
– reference: LiJ.LuoS.QiY.HuangY.Numerical solution of differential equations by radial basis function neural networksProc. Int. Jt Conf. Neural Netw2002773777
– reference: DaiH.Matrix Theory2001BeijingScience Press
– reference: HanX.Numerical Analysis2011BeijingHigher Education Press(in Chinese)
– reference: FrankeR.Scattered data interpolation: tests of some methodsMath. Comput.1982381571812006372960476.65005
– reference: MeadeA.J.Jr.FernandezA.A.Solution of nonlinear ordinary differential equations by feedforward neural networksMath. Comput. Model.1994209194413026290818.6507710.1016/0895-7177(94)00160-X
– reference: MalekA.BeidokhtiR.S.Numerical solution for high order differential equations using a hybrid neural network-optimization methodAppl. Math. Comput.2006183126027122828081105.65340
– reference: HuangG.B.ZhuQ.Y.SiewC.K.Extreme learning machine: theory and applicationsNeurocomputing200670148950110.1016/j.neucom.2005.12.126
– reference: HouM.LiuT.YangY.A new hybrid constructive neural network method for impacting and its application on tungsten price predictionAppl. Intell.2017471284310.1007/s10489-016-0882-z
– reference: MeadeA.J.Jr.FernandezA.A.The numerical solution of linear ordinary differential equations by feedforward neural networksMath. Comput. Model.199419l2512841750807.6507910.1016/0895-7177(94)90095-7
– reference: PakdamanM.AhmadianA.EffatiS.Solving differential equations of fractional order using an optimization technique based on training artificial neural networkAppl. Math. Comput.2017293819535496551411.65090
– reference: LiM.ChenH.ZhangZ.Fifth-order Adams scheme for solving first order ODEsJ. Shaoguan Univ.201334121417
– reference: RuddK.FerrariS.A constrained integration (CINT) approach to solving partial differential equations using artificial neural networksNeurocomputing201515527728510.1016/j.neucom.2014.11.058
– reference: WangP.YuanH.LiuP.Finite difference method and implicit Runge–Kutta method for solving Burgers equationJ. Changchun Univ. Sci. Technol.2013361158160
– reference: Zuniga-AguilarC.J.Coronel-EscamillaA.Gomez-AguilarJ.F.New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networksEur. Phys. J. Plus2018133210.1140/epjp/i2018-11917-0
– reference: ArndtO.BarthT.FreislebenB.GrauerM.Approximating a finite element model by neural network prediction for facility optimization in groundwater engineeringEur. J. Oper. Res.200516637697811112.7638010.1016/j.ejor.2003.09.039
– reference: ZhangQ.Single-step method for solving the initial value problem of ordinary differential equationsBull. Sci. Tech.201228279
– reference: MoodyJ.E.DarkenC.Fast learning in networks of locally tuned processing unitsNeural Comput.19891228129410.1162/neco.1989.1.2.281
– reference: RamuhalliP.UdpaL.UdpaS.S.Finite element neural networks for solving differential equationsIEEE Trans. Neural Netw.20051661381139210.1109/TNN.2005.857945
– reference: EspositoA.MarinaroM.OricchioD.ScarpettaS.Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithmNeural Netw.200013665166510.1016/S0893-6080(00)00035-6
– reference: XiL.HouM.LeeM.A new constructive neural network method for noise processing and its application on stock market predictionAppl. Soft Comput.201415576610.1016/j.asoc.2013.10.013
– volume: 183
  start-page: 260
  issue: 1
  year: 2006
  ident: 1927_CR53
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.05.068
– volume: 103
  start-page: 382
  year: 2017
  ident: 1927_CR64
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.06.030
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 1927_CR23
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 4
  start-page: 343
  issue: 4
  year: 2015
  ident: 1927_CR7
  publication-title: Adv. Appl. Math.
  doi: 10.12677/AAM.2015.44042
– start-page: 44
  volume-title: Complexity and VLSI Processing
  year: 1999
  ident: 1927_CR36
– start-page: 813
  volume-title: Industrial Electronics and Applications. 2007. Iciea 2007. IEEE Conference on
  year: 2007
  ident: 1927_CR51
– start-page: 109
  volume-title: 3rd International Conference on Information and Computing
  year: 2010
  ident: 1927_CR28
– ident: 1927_CR10
– volume: 247
  start-page: 100
  year: 2014
  ident: 1927_CR67
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.08.085
– volume: 29
  start-page: 1545
  issue: 12
  year: 2018
  ident: 1927_CR19
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2701-1
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 1927_CR57
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 95
  start-page: 528
  issue: 3
  year: 2018
  ident: 1927_CR65
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2017.1291932
– volume: 166
  start-page: 769
  issue: 3
  year: 2005
  ident: 1927_CR43
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2003.09.039
– volume: 63
  start-page: 447
  year: 2005
  ident: 1927_CR41
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.06.009
– volume: 27
  start-page: 197
  issue: 3
  year: 2003
  ident: 1927_CR35
  publication-title: Neural Netw.
– volume: 13
  start-page: 385
  issue: 3
  year: 2000
  ident: 1927_CR24
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00013-7
– volume: 81
  start-page: 2331
  issue: 24–25
  year: 2003
  ident: 1927_CR39
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(03)00314-6
– volume: 72
  start-page: 2385
  issue: 10–12
  year: 2009
  ident: 1927_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.004
– volume: 5
  start-page: 305
  year: 1993
  ident: 1927_CR32
  publication-title: Neural Comput.
  doi: 10.1162/neco.1993.5.2.305
– volume: 15
  start-page: 57
  year: 2014
  ident: 1927_CR18
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.10.013
– volume: 14
  start-page: 185
  issue: 2
  year: 2001
  ident: 1927_CR25
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00095-2
– volume: 36
  start-page: 158
  issue: 1
  year: 2013
  ident: 1927_CR4
  publication-title: J. Changchun Univ. Sci. Technol.
– volume: 16
  start-page: 1381
  issue: 6
  year: 2005
  ident: 1927_CR27
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.857945
– volume-title: Numerical Analysis
  year: 2011
  ident: 1927_CR1
– volume: 29
  start-page: 619
  issue: 9
  year: 2018
  ident: 1927_CR15
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2598-8
– volume: 293
  start-page: 81
  year: 2017
  ident: 1927_CR66
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2016.07.021
– year: 2018
  ident: 1927_CR13
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3490-5
– volume: 10
  start-page: 95
  issue: 3
  year: 2011
  ident: 1927_CR3
  publication-title: J. Tongling Vocat. Tech. Coll.
– volume: 40
  start-page: 123
  issue: 5
  year: 2013
  ident: 1927_CR5
  publication-title: J. Beijing Univ. Chem. Technol.
– start-page: 773
  volume-title: Proc. Int. Jt Conf. Neural Netw
  year: 2002
  ident: 1927_CR29
– volume: 7
  start-page: 389
  issue: 2
  year: 1994
  ident: 1927_CR38
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(94)90031-0
– volume: 11
  start-page: 2173
  issue: 2
  year: 2011
  ident: 1927_CR21
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.07.016
– volume: 18
  start-page: 206
  issue: 2
  year: 2010
  ident: 1927_CR44
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2009.10.007
– volume: 28
  start-page: 7
  issue: 2
  year: 2012
  ident: 1927_CR2
  publication-title: Bull. Sci. Tech.
– volume: 40
  start-page: 585
  issue: 4
  year: 2003
  ident: 1927_CR45
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/S1365-1609(03)00042-X
– volume: 1
  start-page: 281
  issue: 2
  year: 1989
  ident: 1927_CR30
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.281
– volume: 14
  start-page: 261
  issue: 3
  year: 2001
  ident: 1927_CR55
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1012784129883
– volume: 5
  start-page: 247
  year: 2011
  ident: 1927_CR9
  publication-title: Sci. Mosaic
– volume: 155
  start-page: 277
  year: 2015
  ident: 1927_CR54
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.058
– volume: 38
  start-page: 181
  issue: 157
  year: 1982
  ident: 1927_CR34
  publication-title: Math. Comput.
– volume: 43
  start-page: 347
  year: 2016
  ident: 1927_CR59
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.069
– volume: 10
  start-page: 104
  year: 2009
  ident: 1927_CR62
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2007.08.017
– year: 2018
  ident: 1927_CR16
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3450-0
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 2002
  ident: 1927_CR33
– year: 2018
  ident: 1927_CR60
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-018-9911-8
– volume: 34
  start-page: 14
  issue: 12
  year: 2013
  ident: 1927_CR6
  publication-title: J. Shaoguan Univ.
– volume: 81
  start-page: 1099
  issue: 8–11
  year: 2003
  ident: 1927_CR46
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(03)00007-5
– volume: 29
  start-page: 1261
  issue: 11
  year: 2018
  ident: 1927_CR14
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2642-8
– volume: 29
  start-page: 1377
  issue: 12
  year: 2018
  ident: 1927_CR11
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2655-3
– volume: 40
  start-page: 1097
  issue: 11
  year: 2009
  ident: 1927_CR42
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.06.008
– volume: 35
  start-page: 1257
  year: 1988
  ident: 1927_CR26
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/31.7600
– volume: 13
  start-page: 651
  issue: 6
  year: 2000
  ident: 1927_CR31
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00035-6
– volume: 47
  start-page: 28
  issue: 1
  year: 2017
  ident: 1927_CR17
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0882-z
– volume-title: Matrix Theory
  year: 2001
  ident: 1927_CR58
– volume: 26
  start-page: 43
  issue: 3
  year: 2012
  ident: 1927_CR8
  publication-title: J. Xichang Coll.
– volume: 21
  start-page: 25
  issue: 1
  year: 2012
  ident: 1927_CR22
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0604-8
– volume: 19
  start-page: l
  year: 1994
  ident: 1927_CR47
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)90095-7
– volume: 4
  start-page: 213
  issue: 2
  year: 2009
  ident: 1927_CR37
  publication-title: ISAST Trans. Comput. Intell. Syst.
– start-page: 586
  volume-title: Proceedings of the IEEE International Conference on Neural Networks
  year: 1993
  ident: 1927_CR52
  doi: 10.1109/ICNN.1993.298623
– volume: 12
  start-page: 3051
  year: 2012
  ident: 1927_CR56
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.014
– volume: 133
  issue: 2
  year: 2018
  ident: 1927_CR63
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-11917-0
– volume: 43
  start-page: 347
  year: 2016
  ident: 1927_CR50
  publication-title: Appl. Comput.
– volume: 21
  start-page: 1517
  issue: 9
  year: 2010
  ident: 1927_CR20
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2055888
– volume: 63
  start-page: 693
  issue: 4
  year: 1997
  ident: 1927_CR40
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(96)00082-X
– volume: 29
  start-page: 1205
  issue: 11
  year: 2018
  ident: 1927_CR12
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2623-y
– volume: 74
  start-page: 2062
  year: 2011
  ident: 1927_CR61
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.026
– volume: 20
  start-page: 19
  issue: 9
  year: 1994
  ident: 1927_CR48
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(94)00160-X
– volume: 13
  start-page: 1
  issue: 1
  year: 2017
  ident: 1927_CR68
  publication-title: J. Math. Stat.
  doi: 10.3844/jmssp.2017.1.13
SSID ssj0029488
Score 2.3718896
Snippet This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary...
Abstract This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Basis functions
Classic Emden–Fowler equation
Comparative studies
Difference and Functional Equations
Functional Analysis
Improved extreme learning machine
Legendre neural network
Legendre polynomial
Machine learning
Mathematical analysis
Mathematics
Mathematics and Statistics
Neural networks
Neurons
Nonlinear differential equations
Nonlinear equations
Numerical analysis
ODEs
Ordinary Differential Equations
Partial Differential Equations
Polynomials
Test procedures
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3KooA91eVRz6KlVROIkfhyhKkJV4VQkbpYfY7rSkoXdbQXH_vOOnYRCpcKFa-xIluezZ8Yefx9jH0LkDjllJ61HWzQx2EJ73RYtqhbboKLKKhEnp-L4rPl63p7fk_pKNWE9PXA_cfuhlqULFkOTLqS4trSBOo2lT6IRsc7ZOvm8MZkaUi1NuBzuMCsl9pdVLUQqQaCMSXNZ3DzwQpms_0GE-c-laPY1R5vs5RAkwkE_uC22ht0rtnGPOvA1-30A3fwXzmCaTwUwAO2y6awPBh2IC7jMdZIIdnYxX0xXPy5h2gFBLR0hAOWc-SUujAoptNJngNc98_cS3C18QwJXWCAkzktq7PqKcehFp5dv2NnRl--fj4tBTqHwtDBXRSttQKGi40FI7oVL0ZkVsXaxlhVKHRtNfqzy5NikpHmyQZQaVcmj19zH-i1b7-YdvmOQHL_XUQvaoppKOyetJq8nhLICKWSYsHKcXuMHrvEkeTEzOedQwvQWMWQRkyxibibs490vVz3RxmOdD5PN7jomjuz8gZBjBuSYp5AzYbujxc2wcJeGIiCVKN2qZsI-jSj42_zfEW0_x4h22AueMcoJprtsfbX4iXsU86zc-wzvP0hO_pc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIotBfnACRQ1cRLHPqGCWCoEnKjUm-XHeKm0zbabpWqP_HNmHGdLkeg1dqLE835kPsbehCgcCIxOWg-2aGKwhfa6LVpQLbRBRZVQIr59l4dHzZfj9jgn3IbcVjnpxKSow8pTjnwfTZOiWVtV8_7svCDUKKquZgiNu-xehZaGOFzNP28DLt0k3MlKoiCRJ5CrmpWS-0NVS0lNCRhDadEVlzfsUhrff8Pn_KdMmqzP_BF7mN1GfjDS-TG7A_0T9uCvYYJP2e8D3q8uYMlPUp4AAke9S9k_npEhFvw0dU4Ct8sFftrm5yk_6TkyHyUVOEah6d9cPmGmoOwvOZyPs8AH7q74V0B2C2vgNAUTF_uxh5yPMNTDM3Y0__Tj42GRARYKj6K6KdrOBpAqOhFkJ7x05K9ZGWsX666CTsdGo2WrPJq6rsNzskGWGlQpotfCx_o52-lXPbxgnFwBr6OWqLSaSjvXWY12UEplJaATMWPldLzG5-njBIKxNCkKUdKMFDFIEUMUMZcz9nZ7y9k4euO2zR-IZtuNNDU7XVitFyYLoQl1V7pgITRU3BTaojF2GkpPACSxLmdsb6K4yaI8mGvGm7F3ExdcL__3jXZvf9hLdl8k7hPIgHtsZ7P-Ba_Qv9m414mJ_wBpZPgy
  priority: 102
  providerName: ProQuest
Title A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods
URI https://link.springer.com/article/10.1186/s13662-018-1927-x
https://www.proquest.com/docview/2158433214
https://doaj.org/article/d370bdaed4954929a429b9e0c0680f30
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQe4ED4imWPuRDT6CIxEn8OG5XXSpEK4RYqTfLj_Gy0jZLN0tVjvzzjp1koQiQerHk2JYiz4znZX9DyJEPzAJD76R2YLIqeJMpp-qsBllD7WWQqUrE2Tk_nVUfLuqL_h13O9x2H1KS6aROYi35u7YoOY_XCNDrUUxkaDjuRjSx6HFV-futl6WQJfv05V-X3VFACaf_jnH5Rz40qZnpE_K4tw_puCPoU_IAmmfk0W-ogdg720Ktts_JzzFtVtewpIsUHgBP8biNQT_aF4SY08t0YRKoWc5X68Xm6yVdNBR5LsYSKDqf6UkuHUqloMgvKVx1EOAttT_oR0Au82ugEfwSB5vu6jjtqk-3L8hsevJlcpr1dRUyhxK6yWphPHAZLPNcMMdtNNMMD6UNpShAqFApVGiFQw0nBO6a8TxXIHMWnGIulC_JTrNq4BWh0QJwKiiOdKgKZa0wCtUf59JwQNthRPJhs7XrQcdj7YulTs6H5Lqjj0b66EgffTMib7ZLvnWIG_-bfBwpuJ0YwbLTh9V6rnvZ074UufUGfBVzmkwZ1MFWQe5i3ZFQ5iOyP9Bf9xLcajSFZMR2K6oReTvwxK_hf_7R63vN3iMPWWJNhty5T3Y26-9wgFbOxh4mrsZWTrHdPT45__QZexM-OUxxA2xnbHwLaVD9JQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdaMEHuICiJk7i2AeEymPZ0m1PrdSb8WO8VNpm280C7ZE_xG_s2Em2FIneeo0dy_J8noc9no-QV84zAwyjk9KCTgrvdCKtLJMSRAmlE15ElojdPT46KL4elocr5E__FiakVfY6MSpqN7PhjHwTTZMItbay4v3JaRJYo8Ltak-h0cJiB85_YcjWvNv-hPJ9zdjw8_7HUdKxCiQW8blIyko74MIb5njFLDfBSdHc58bnVQaV9IVEdZ5Z1O9VhQ6QdjyVIFLmrWTW5zjuLXIb5yJDCqEYflkGeLKIPJcZx40bPI_uFjUTfLPJcs5DEgTGbJJVydkVOxjpAq74uP9cy0ZrN3xA7nduKt1qcfWQrED9iNz7q3jhY_J7i9aznzClR_FcAhxFPR9OG2nHRDGhxzFTE6ieTnApF9-P6VFNEezhEIPiEsa3wLTnaEFdM6Vw2tYeb6g5p2NAeLs50FB1ExvrNmedtrTXzRNycCNL_5Ss1rMa1ggNroeVXnJUkkUmjam0RLvLudAc0GkZkLRfXmW7aueBdGOqYtQjuGololAiKkhEnQ3Im-UvJ22pj-s6fwgyW3YMVbrjh9l8orpNr1xepcZpcEW4TGVSo_E3ElIbCE98ng7Iei9x1amORl0CfUDe9ii4bP7vjJ5dP9hLcme0vztW4-29nefkLotIZAjGdbK6mP-ADfStFuZFBDQl3256B10AW6Q0PQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcUHmpCy34ABdQtImT2PEBoUJZWloqDlTqzfgxXipts-1mgfbYv9Vfx9hJthSJ3nrNS9HM5_E39ng-Ql46zwwwzE5KCzopvNOJtLJMSqhKKF3lq6gS8WWPb-0Xnw_KgyVy0Z-FCWWVfUyMgdpNbVgjH-LUVIVeW1kx9F1ZxNfN0bvjkyQoSIWd1l5Oo4XIDpz9xvStebu9ib5-xdjo47cPW0mnMJBYxOo8KYV2wCtvmOOCWW4CYdHc58bnIgMhfSExtGcWY70QSIa046mEKmXeSmZ9jt-9RW6LHK-EU-qjT4tkTxZR8zLjOIgDC-l2VLOKD5ss5zwURGD-JplITq_MiVE64Arf_WeLNs58oxVyv6OsdKPF2AOyBPVDcu-vRoaPyPkGrae_YEIP4xoFOIqGCyuPtFOlGNOjWLUJVE_GaMr5jyN6WFMEfljQoGjCeC6Y9notGHcmFE7aPuQNNWd0FxDqbgY0dODEm3Vbv05bCezmMdm_EdM_Icv1tIZVQgMNsdJLjgGzyKQxQkucgzmvNAckMAOS9uZVtut8HgQ4JipmQBVXrUcUekQFj6jTAXm9eOW4bftx3cPvg88WD4aO3fHCdDZWXQBQLhepcRpcETZWmdRIBIyE1AbxE5-nA7LWe1x1YaRRl6AfkDc9Ci5v__ePnl7_sRfkDo4dtbu9t_OM3GURiAyxuEaW57OfsI40a26eRzxT8v2mB9AfpIs4ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+improved+extreme+learning+machine+algorithm+in+solving+ordinary+differential+equations+by+Legendre+neural+network+methods&rft.jtitle=Advances+in+difference+equations&rft.au=Yang%2C+Yunlei&rft.au=Hou%2C+Muzhou&rft.au=Luo%2C+Jianshu&rft.date=2018-12-19&rft.pub=Springer+International+Publishing&rft.eissn=1687-1847&rft.volume=2018&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-018-1927-x&rft.externalDocID=10_1186_s13662_018_1927_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon