A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods

This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary differential equations (SODEs), as well as classic Emden–Fowler equations. The Legendre polynomial is chosen as a basis function of hidden neurons. A...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2018; no. 1; pp. 1 - 24
Main Authors Yang, Yunlei, Hou, Muzhou, Luo, Jianshu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 19.12.2018
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper develops a Legendre neural network method (LNN) for solving linear and nonlinear ordinary differential equations (ODEs), system of ordinary differential equations (SODEs), as well as classic Emden–Fowler equations. The Legendre polynomial is chosen as a basis function of hidden neurons. A single hidden layer Legendre neural network is used to eliminate the hidden layer by expanding the input pattern using Legendre polynomials. The improved extreme learning machine (IELM) algorithm is used for network weights training when solving algebraic equation systems, and several algorithm steps are summed up. Convergence was analyzed theoretically to support the proposed method. In order to demonstrate the performance of the method, various testing problems are solved by the proposed approach. A comparative study with other approaches such as conventional methods and latest research work reported in the literature are described in detail to validate the superiority of the method. Experimental results show that the proposed Legendre network with IELM algorithm requires fewer neurons to outperform the numerical algorithm in the latest literature in terms of accuracy and execution time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-018-1927-x