Understanding the spatial distribution of coke deposition within bimodal micro-/mesoporous catalysts using a novel sorption method in combination with pulsed-gradient spin-echo NMR
Determination of the spatial location of metal surface area within bidisperse, MFI zeolite-based catalysts. [Display omitted] ► Novel method for the determination of the spatial distribution of active metal surface area. ► PGSE NMR studies of mass transport within bimodal Pt-ZSM-5 catalysts. ► Benze...
Saved in:
Published in | Journal of catalysis Vol. 286; pp. 260 - 265 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.02.2012
Elsevier Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Determination of the spatial location of metal surface area within bidisperse, MFI zeolite-based catalysts. [Display omitted]
► Novel method for the determination of the spatial distribution of active metal surface area. ► PGSE NMR studies of mass transport within bimodal Pt-ZSM-5 catalysts. ► Benzene alkylation with ethane studied. ► New method used to explain different coking behaviour in different catalysts.
A new method for the determination of the spatial distribution of metal surface area within bimodal micro-/mesoporous solids has been developed. This novel technique involves incorporating a nonane pre-adsorption stage between two successive chemisorption experiments. This method has been used to probe the distribution of platinum amongst the micropores and mesopores of a range of bi-functional PtH-MFI catalysts, each possessing differing surface acidities, which have been used for benzene alkylation with ethane. It has been found that the catalyst with the lowest Si/Al ratio, and thus highest number of acid sites, also possessed the largest metal surface area within its microporosity. This catalyst was also the one that deactivated most rapidly, with coke being deposited predominantly within the micropore network. This was attributed to the bi-functional mechanism for coke formation at higher temperatures. Pulsed-gradient spin-echo NMR has also been used to show that a combination of higher mesopore platinum concentration and higher mass transport rates facilitated greater coke deposition within the mesoporosity. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.jcat.2011.11.012 |
ISSN: | 0021-9517 1090-2694 |
DOI: | 10.1016/j.jcat.2011.11.012 |