Semiblind Hyperspectral Unmixing in the Presence of Spectral Library Mismatches

The dictionary-aided sparse regression (SR) approach has recently emerged as a promising alternative to hyperspectral unmixing in remote sensing. By using an available spectral library as a dictionary, the SR approach identifies the underlying materials in a given hyperspectral image by selecting a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 54; no. 9; pp. 5171 - 5184
Main Authors Xiao Fu, Wing-Kin Ma, Bioucas-Dias, Jose M., Tsung-Han Chan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The dictionary-aided sparse regression (SR) approach has recently emerged as a promising alternative to hyperspectral unmixing in remote sensing. By using an available spectral library as a dictionary, the SR approach identifies the underlying materials in a given hyperspectral image by selecting a small subset of spectral samples in the dictionary to represent the whole image. A drawback with the current SR developments is that an actual spectral signature in the scene is often assumed to have zero mismatch with its corresponding dictionary sample, and such an assumption is considered too ideal in practice. In this paper, we tackle the spectral signature mismatch problem by proposing a dictionary-adjusted nonconvex sparsity-encouraging regression (DANSER) framework. The main idea is to incorporate dictionary-correcting variables in an SR formulation. A simple and low per-iteration complexity algorithm is tailor-designed for practical realization of DANSER. Using the same dictionary-correcting idea, we also propose a robust subspace solution for dictionary pruning. Extensive simulations and real-data experiments show that the proposed method is effective in mitigating the undesirable spectral signature mismatch effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2016.2557340