A coupled system of fractional differential equations on the half-line

In this paper, we consider a new fractional differential system on an unbounded domain D α u ( t ) + φ ( t , v ( t ) , D γ 1 v ( t ) ) = 0 , t ∈ [ 0 , + ∞ ) , α ∈ ( 2 , 3 ] , D β v ( t ) + ψ ( t , u ( t ) , D γ 2 u ( t ) ) = 0 , t ∈ [ 0 , + ∞ ) , β ∈ ( 2 , 3 ] , subject to the conditions I 3 − α u (...

Full description

Saved in:
Bibliographic Details
Published inBoundary value problems Vol. 2019; no. 1; pp. 1 - 22
Main Authors Zhai, Chengbo, Ren, Jing
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 05.07.2019
Hindawi Limited
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-2770
1687-2762
1687-2770
DOI10.1186/s13661-019-1230-0

Cover

Loading…
More Information
Summary:In this paper, we consider a new fractional differential system on an unbounded domain D α u ( t ) + φ ( t , v ( t ) , D γ 1 v ( t ) ) = 0 , t ∈ [ 0 , + ∞ ) , α ∈ ( 2 , 3 ] , D β v ( t ) + ψ ( t , u ( t ) , D γ 2 u ( t ) ) = 0 , t ∈ [ 0 , + ∞ ) , β ∈ ( 2 , 3 ] , subject to the conditions I 3 − α u ( t ) | t = 0 = 0 , D α − 2 u ( t ) | t = 0 = ∫ 0 h g 1 ( s ) u ( s ) d s , D α − 1 u ( + ∞ ) = M u ( ξ ) + a , I 3 − β v ( t ) | t = 0 = 0 , D β − 2 v ( t ) | t = 0 = ∫ 0 h g 2 ( s ) v ( s ) d s , D β − 1 v ( + ∞ ) = N v ( η ) + b . The nonlinear terms φ and ψ are dependent on the fractional derivative of lower order γ i ∈ ( 0 , 1 ) , i = 1 , 2 , which creates additional complexity to verify the existence of solutions. Moreover, a proper choice of Banach space allows the solutions to be defined on the half-line. From some standard fixed point theorems, sufficient conditions for the existence and uniqueness of solutions to boundary value problems are developed. Finally, the main result is applied to an illustrative example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-019-1230-0