Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion

The objective of this study was to characterize the mechanics of maximal running sprint acceleration in high‐level athletes. Four elite (100‐m best time 9.95–10.29 s) and five sub‐elite (10.40–10.60 s) sprinters performed seven sprints in overground conditions. A single virtual 40‐m sprint was recon...

Full description

Saved in:
Bibliographic Details
Published inScandinavian journal of medicine & science in sports Vol. 25; no. 5; pp. 583 - 594
Main Authors Rabita, G., Dorel, S., Slawinski, J., Sàez-de-Villarreal, E., Couturier, A., Samozino, P., Morin, J-B.
Format Journal Article
LanguageEnglish
Published Denmark Blackwell Publishing Ltd 01.10.2015
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The objective of this study was to characterize the mechanics of maximal running sprint acceleration in high‐level athletes. Four elite (100‐m best time 9.95–10.29 s) and five sub‐elite (10.40–10.60 s) sprinters performed seven sprints in overground conditions. A single virtual 40‐m sprint was reconstructed and kinetics parameters were calculated for each step using a force platform system and video analyses. Anteroposterior force (FY), power (PY), and the ratio of the horizontal force component to the resultant (total) force (RF, which reflects the orientation of the resultant ground reaction force for each support phase) were computed as a function of velocity (V). FY‐V, RF‐V, and PY‐V relationships were well described by significant linear (mean R2 of 0.892 ± 0.049 and 0.950 ± 0.023) and quadratic (mean R2 = 0.732 ± 0.114) models, respectively. The current study allows a better understanding of the mechanics of the sprint acceleration notably by modeling the relationships between the forward velocity and the main mechanical key variables of the sprint. As these findings partly concern world‐class sprinters tested in overground conditions, they give new insights into some aspects of the biomechanical limits of human locomotion.
Bibliography:istex:CE3A08224ACBA18F1E4C9357BB9099351F546B0A
ark:/67375/WNG-L4QLZ697-4
ArticleID:SMS12389
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0905-7188
1600-0838
DOI:10.1111/sms.12389