Estimating the Biomass of Maize with Hyperspectral and LiDAR Data

The accurate estimation of crop biomass during the growing season is very important for crop growth monitoring and yield estimation. The objective of this paper was to explore the potential of hyperspectral and light detection and ranging (LiDAR) data for better estimation of the biomass of maize. F...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 9; no. 1; p. 11
Main Authors Wang, Cheng, Nie, Sheng, Xi, Xiaohuan, Luo, Shezhou, Sun, Xiaofeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The accurate estimation of crop biomass during the growing season is very important for crop growth monitoring and yield estimation. The objective of this paper was to explore the potential of hyperspectral and light detection and ranging (LiDAR) data for better estimation of the biomass of maize. First, we investigated the relationship between field-observed biomass with each metric, including vegetation indices (VIs) derived from hyperspectral data and LiDAR-derived metrics. Second, the partial least squares (PLS) regression was used to estimate the biomass of maize using VIs (only) and LiDAR-derived metrics (only), respectively. Third, the fusion of hyperspectral and LiDAR data was evaluated in estimating the biomass of maize. Finally, the biomass estimates were validated by a leave-one-out cross-validation (LOOCV) method. Results indicated that all VIs showed weak correlation with field-observed biomass and the highest correlation occurred when using the red edge-modified simple ratio index (ReMSR). Among all LiDAR-derived metrics, the strongest relationship was observed between coefficient of variation (HCVof digital terrain model (DTM) normalized point elevations with field-observed biomass. The combination of VIs through PLS regression could not improve the biomass estimation accuracy of maize due to the high correlation between VIs. In contrast, the HCV combined with Hmean performed better than one LiDAR-derived metric alone in biomass estimation (R2 = 0.835, RMSE = 374.655 g/m2, RMSECV = 393.573 g/m2). Additionally, our findings indicated that the fusion of hyperspectral and LiDAR data can provide better biomass estimates of maize (R2 = 0.883, RMSE = 321.092 g/m2, RMSECV = 337.653 g/m2) compared with LiDAR or hyperspectral data alone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs9010011