Self-organization in aggregating robot swarms: A DW-KNN topological approach
In certain swarm applications, where the inter-agent distance is not the only factor in the collective behaviours of the swarm, additional properties such as density could have a crucial effect. In this paper, we propose applying a Distance-Weighted K-Nearest Neighbouring (DW-KNN) topology to the be...
Saved in:
Published in | BioSystems Vol. 165; pp. 106 - 121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In certain swarm applications, where the inter-agent distance is not the only factor in the collective behaviours of the swarm, additional properties such as density could have a crucial effect. In this paper, we propose applying a Distance-Weighted K-Nearest Neighbouring (DW-KNN) topology to the behaviour of robot swarms performing self-organized aggregation, in combination with a virtual physics approach to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach, which is used to evaluate the robot density in the swarm, is applied as the key factor for identifying the K-nearest neighbours taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbours is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach, showing various self-organized aggregations performed by a swarm of N foot-bot robots. Also, we compared the aggregation quality of DW-KNN aggregation approach to that of the conventional KNN approach and found better performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0303-2647 1872-8324 |
DOI: | 10.1016/j.biosystems.2018.01.005 |