Multivariate Multi-Scale Permutation Entropy for Complexity Analysis of Alzheimer’s Disease EEG

An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Per...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 14; no. 7; pp. 1186 - 1202
Main Authors Morabito, Francesco Carlo, Labate, Domenico, La Foresta, Fabio, Bramanti, Alessia, Morabito, Giuseppe, Palamara, Isabella
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2012
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e14071186

Cover

Loading…
Abstract An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Permutation Entropy, a methodology for time series processing based on ordinal analysis. Permutation Entropy is conceptually simple, structurally robust to noise and artifacts, computationally very fast, which is relevant for designing portable diagnostics. Since time series derived from biological systems show structures on multiple spatial-temporal scales, the proposed technique can be useful for other types of biomedical signal analysis. In this work, the possibility of distinguish among the brain states related to Alzheimer’s disease patients and Mild Cognitive Impaired subjects from normal healthy elderly is checked on a real, although quite limited, experimental database.
AbstractList An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Permutation Entropy, a methodology for time series processing based on ordinal analysis. Permutation Entropy is conceptually simple, structurally robust to noise and artifacts, computationally very fast, which is relevant for designing portable diagnostics. Since time series derived from biological systems show structures on multiple spatial-temporal scales, the proposed technique can be useful for other types of biomedical signal analysis. In this work, the possibility of distinguish among the brain states related to Alzheimer's disease patients and Mild Cognitive Impaired subjects from normal healthy elderly is checked on a real, although quite limited, experimental database.
Author Morabito, Giuseppe
Labate, Domenico
La Foresta, Fabio
Morabito, Francesco Carlo
Bramanti, Alessia
Palamara, Isabella
Author_xml – sequence: 1
  givenname: Francesco Carlo
  surname: Morabito
  fullname: Morabito, Francesco Carlo
– sequence: 2
  givenname: Domenico
  surname: Labate
  fullname: Labate, Domenico
– sequence: 3
  givenname: Fabio
  surname: La Foresta
  fullname: La Foresta, Fabio
– sequence: 4
  givenname: Alessia
  surname: Bramanti
  fullname: Bramanti, Alessia
– sequence: 5
  givenname: Giuseppe
  surname: Morabito
  fullname: Morabito, Giuseppe
– sequence: 6
  givenname: Isabella
  surname: Palamara
  fullname: Palamara, Isabella
BookMark eNptkc1OGzEQx62KSgXaQ9_AEqceFvyxttfHKE0BCUSlcrdmvePiaLNObaciPfEavB5PQkoqVFU9zYd-8x_N_I_IwZQmJOQjZ6dSWnaGvGWG806_IYecWdu0krGDv_J35KiUJWNCCq4PCVxvxhp_Qo5Qkb4UzTcPI9KvmFebCjWmiS6mmtN6S0PKdJ5W6xHvY93S2QTjtsRCU6Cz8dcdxhXmp4fHQj_HglCQLhbn78nbAGPBD3_iMbn9sridXzRXN-eX89lV41vR1qYfVCdlJwcujGKDF-gHDCjZoIKFXgitjEVQQnQelG5NkMqynmvQPepBHpPLveyQYOnWOa4gb12C6F4aKX93kGv0IzpkQffcdqYFaCUwa7BV3ljrWS-CFTutk73WOqcfGyzVLdMm744tjitpTMc6o3fUpz3lcyolY3jdypn7bYZ7NWPHnv3D-rj_bc0Qx_9MPANBu43d
CitedBy_id crossref_primary_10_1109_JSEN_2013_2263794
crossref_primary_10_3390_e21100959
crossref_primary_10_1063_5_0223168
crossref_primary_10_1016_j_cmpb_2023_107941
crossref_primary_10_25046_aj060514
crossref_primary_10_3390_e26090728
crossref_primary_10_1016_j_asoc_2024_112222
crossref_primary_10_3389_fnins_2020_562132
crossref_primary_10_1016_j_measurement_2019_107233
crossref_primary_10_1109_TNNLS_2018_2791644
crossref_primary_10_1177_10775463241227473
crossref_primary_10_1007_s00362_020_01171_7
crossref_primary_10_1080_10255842_2024_2423268
crossref_primary_10_1016_j_iot_2019_03_002
crossref_primary_10_1109_JSEN_2013_2271735
crossref_primary_10_1007_s11571_017_9467_8
crossref_primary_10_1177_01423312241257143
crossref_primary_10_1016_j_physa_2019_122674
crossref_primary_10_1007_s11277_020_07742_z
crossref_primary_10_3390_e18050184
crossref_primary_10_1007_s11517_017_1734_7
crossref_primary_10_1016_j_chaos_2023_114158
crossref_primary_10_1063_5_0136181
crossref_primary_10_3390_e16126212
crossref_primary_10_3390_e19100557
crossref_primary_10_3390_s18041160
crossref_primary_10_1098_rsta_2014_0091
crossref_primary_10_1103_PhysRevE_94_022118
crossref_primary_10_3390_e20030148
crossref_primary_10_3390_e24010102
crossref_primary_10_3389_fnagi_2022_888577
crossref_primary_10_1007_s12206_017_0514_5
crossref_primary_10_3390_app7010092
crossref_primary_10_1142_S0129065721300023
crossref_primary_10_1016_j_neunet_2014_01_006
crossref_primary_10_1140_epjst_e2013_01840_1
crossref_primary_10_1007_s11071_020_05826_w
crossref_primary_10_3390_e21010011
crossref_primary_10_1155_2024_8813251
crossref_primary_10_3390_e14112157
crossref_primary_10_1109_TNSRE_2022_3182705
crossref_primary_10_3390_e23020244
crossref_primary_10_1016_j_compbiomed_2021_104799
crossref_primary_10_3934_dcdsb_2015_20_3301
crossref_primary_10_1016_j_cmpb_2021_106116
crossref_primary_10_3390_e25030396
crossref_primary_10_1029_2021JA030200
crossref_primary_10_1142_S0129065715500057
crossref_primary_10_1142_S0217979218500868
crossref_primary_10_1063_5_0132602
crossref_primary_10_1155_2021_3839800
crossref_primary_10_1007_s10548_017_0599_2
crossref_primary_10_1007_s12652_020_02824_z
crossref_primary_10_1016_j_physa_2019_123099
crossref_primary_10_1016_j_physleta_2017_03_052
crossref_primary_10_3390_e19010031
crossref_primary_10_1063_5_0010462
crossref_primary_10_1016_j_biopsycho_2017_05_005
crossref_primary_10_1142_S0129065712500244
crossref_primary_10_3390_e22010116
crossref_primary_10_1109_ACCESS_2019_2918560
crossref_primary_10_1155_2016_3109385
crossref_primary_10_1515_bmt_2017_0041
crossref_primary_10_1016_j_physa_2020_125081
crossref_primary_10_3390_e22030347
crossref_primary_10_3390_e26121126
crossref_primary_10_4018_ijmtie_2012100102
crossref_primary_10_1142_S0129065716500398
crossref_primary_10_1016_j_brainresbull_2015_05_001
crossref_primary_10_1177_1687814016676157
crossref_primary_10_3390_e19120692
crossref_primary_10_3390_s23167137
crossref_primary_10_1109_ACCESS_2022_3165199
crossref_primary_10_1016_j_apenergy_2021_117992
crossref_primary_10_1049_htl_2014_0106
crossref_primary_10_1016_j_jhydrol_2020_125801
crossref_primary_10_1109_TIE_2021_3063979
crossref_primary_10_3390_e17063595
crossref_primary_10_1007_s11770_022_0926_6
crossref_primary_10_3390_e21090868
crossref_primary_10_1142_S0129065718500387
crossref_primary_10_3390_s20113159
crossref_primary_10_3389_fnhum_2015_00367
crossref_primary_10_1063_1_4917013
crossref_primary_10_1142_S0218348X21500481
crossref_primary_10_1063_5_0049901
crossref_primary_10_12677_CSA_2022_123059
crossref_primary_10_3390_e19040141
crossref_primary_10_1007_s11071_019_04933_7
crossref_primary_10_1016_j_bspc_2017_08_012
crossref_primary_10_3390_e15031069
crossref_primary_10_3389_fnagi_2017_00378
crossref_primary_10_1142_S0129065717500204
crossref_primary_10_1177_1077546319877711
crossref_primary_10_1109_JBHI_2022_3187346
crossref_primary_10_1109_JSEN_2013_2257742
crossref_primary_10_1155_2017_1254310
crossref_primary_10_1007_s10044_020_00910_8
crossref_primary_10_1007_s11071_024_10732_6
crossref_primary_10_1016_j_bspc_2020_101927
crossref_primary_10_3390_e24091287
crossref_primary_10_1016_j_chaos_2022_112795
crossref_primary_10_1371_journal_pone_0163940
crossref_primary_10_3390_e19100516
crossref_primary_10_1016_j_neubiorev_2023_105070
crossref_primary_10_3390_electronics13142881
crossref_primary_10_1109_JLT_2018_2802324
crossref_primary_10_1016_j_bspc_2018_08_004
crossref_primary_10_1016_j_engstruct_2022_114479
crossref_primary_10_3390_e24010026
crossref_primary_10_3390_e25111477
crossref_primary_10_3390_e23050617
crossref_primary_10_5812_archneurosci_61161
crossref_primary_10_1016_j_bbr_2016_02_035
crossref_primary_10_1155_2014_471356
crossref_primary_10_1016_j_physa_2016_07_077
crossref_primary_10_1109_TBME_2022_3207582
crossref_primary_10_1016_j_clinph_2014_07_011
crossref_primary_10_1371_journal_pone_0164104
crossref_primary_10_1016_j_expthermflusci_2018_06_009
crossref_primary_10_3390_axioms12111026
crossref_primary_10_3390_e21101023
crossref_primary_10_3389_fnins_2018_00677
crossref_primary_10_3390_e24121752
crossref_primary_10_1109_TBME_2017_2679136
crossref_primary_10_1038_s41598_024_66953_7
crossref_primary_10_1016_j_physa_2020_124485
crossref_primary_10_1016_j_compbiomed_2019_04_038
crossref_primary_10_1063_1_5022021
crossref_primary_10_1109_JBHI_2023_3307606
crossref_primary_10_1109_JSEN_2013_2272802
crossref_primary_10_3390_s16030336
crossref_primary_10_3390_e19050197
crossref_primary_10_3390_e17106834
crossref_primary_10_3390_e19050196
crossref_primary_10_3390_e21090913
crossref_primary_10_1016_j_ins_2014_06_028
crossref_primary_10_1142_S0219477522500110
crossref_primary_10_3390_e24020160
crossref_primary_10_1007_s11071_020_05733_0
crossref_primary_10_1177_10963480231198539
crossref_primary_10_1007_s10950_016_9632_2
crossref_primary_10_1016_j_bspc_2022_104301
crossref_primary_10_1016_j_bspc_2024_106124
crossref_primary_10_1016_j_dsp_2022_103884
crossref_primary_10_3389_fphys_2018_01511
crossref_primary_10_3390_a12090184
crossref_primary_10_3390_e22020189
crossref_primary_10_1109_ACCESS_2020_2975875
crossref_primary_10_1080_13683500_2023_2202308
crossref_primary_10_1016_j_neucom_2017_09_007
crossref_primary_10_3390_e16115668
crossref_primary_10_1007_s13540_023_00155_2
crossref_primary_10_1016_j_bspc_2015_08_004
crossref_primary_10_1007_s11571_016_9418_9
crossref_primary_10_1016_j_chaos_2024_115128
crossref_primary_10_1088_1742_6596_1072_1_012012
crossref_primary_10_3390_e16063049
crossref_primary_10_3390_e20030161
crossref_primary_10_3934_mbe_2022604
crossref_primary_10_1142_S0219477517500195
crossref_primary_10_1186_s40708_021_00130_8
crossref_primary_10_3390_s130810151
crossref_primary_10_1140_epjst_e2018_700098_x
Cites_doi 10.1109/LSP.2011.2180713
10.1097/ALN.0b013e318222ac02
10.1016/j.clinph.2004.01.001
10.1109/INMIC.2005.334494
10.1142/S0218348X07003691
10.1051/epn:2005614
10.1103/PhysRevLett.89.068102
10.1016/j.physa.2005.05.022
10.1142/S0218127403008168
10.1088/0967-3334/27/11/004
10.4061/2011/539621
10.1073/pnas.012579499
10.1016/j.clinph.2008.12.043
10.1103/PhysRevE.84.061918
10.1016/j.neuroimage.2005.05.011
10.1103/PhysRevLett.88.174102
10.1109/MeMeA.2011.5966762
10.2174/1874120701004010223
10.1109/TBME.2011.2162511
10.1088/0967-3334/27/3/003
10.1093/bja/aen290
ContentType Journal Article
Copyright Copyright MDPI AG 2012
Copyright_xml – notice: Copyright MDPI AG 2012
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/e14071186
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Collection (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
EndPage 1202
ExternalDocumentID oai_doaj_org_article_e0f6b19874aa43a097e45c799c0b2f92
3340671571
10_3390_e14071186
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IPNFZ
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
RNS
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c424t-bd583383d12750dc2ecdefe30d5f9ab226579ea5228ca5647f3590b16a6be6d3
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:19:11 EDT 2025
Fri Jul 25 12:02:03 EDT 2025
Tue Jul 01 05:08:39 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-bd583383d12750dc2ecdefe30d5f9ab226579ea5228ca5647f3590b16a6be6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/e0f6b19874aa43a097e45c799c0b2f92
PQID 1537780876
PQPubID 2032401
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e0f6b19874aa43a097e45c799c0b2f92
proquest_journals_1537780876
crossref_primary_10_3390_e14071186
crossref_citationtrail_10_3390_e14071186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2012
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Osipova (ref_2) 2005; 27
Costa (ref_14) 2002; 89
Hornero (ref_15) 2010; 4
ref_10
Keller (ref_9) 2005; 356
Mizuno (ref_24) 2010; 27
Morabito (ref_22) 2011; 1
Silva (ref_11) 2011; 115
Plastino (ref_12) 2005; 36
Ahmed (ref_7) 2011; 84
Sarkar (ref_16) 2006; 8
Abasolo (ref_18) 2006; 27
Keller (ref_17) 2003; 13
Takahashi (ref_23) 2009; 120
Goldeberger (ref_3) 2002; 99
Ahmed (ref_8) 2012; 19
Park (ref_19) 2007; 15
Hu (ref_25) 2012; 59
Jeong (ref_5) 2004; 115
ref_21
Escudero (ref_20) 2006; 27
Olofsen (ref_13) 2008; 101
Dauwels (ref_6) 2011; 2011
Bandt (ref_1) 2002; 88
ref_4
References_xml – volume: 19
  start-page: 91
  year: 2012
  ident: ref_8
  article-title: Multivariate multiscale entropy
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2011.2180713
– volume: 115
  start-page: 303
  year: 2011
  ident: ref_11
  article-title: Performance of anaesthetic depht indexes in rabbits under propofol anaesthetia
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e318222ac02
– volume: 115
  start-page: 1490
  year: 2004
  ident: ref_5
  article-title: EEG Dynamics in Patients with Alzheimer’s Disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.01.001
– ident: ref_21
  doi: 10.1109/INMIC.2005.334494
– volume: 27
  start-page: 1091
  year: 2010
  ident: ref_24
  article-title: Assessment of EEG dynamical complexity in Alzheimer’s Disease using multiscale entropy
  publication-title: Clin. Neurophysiol.
– volume: 15
  start-page: 339
  year: 2007
  ident: ref_19
  article-title: Multiscale entropy analysis of EEG from patients under different pathological condition
  publication-title: Fractals
  doi: 10.1142/S0218348X07003691
– volume: 1
  start-page: 30
  year: 2011
  ident: ref_22
  article-title: Early detection of Alzheimer’s onset with permutation entropy analysis of EEG
  publication-title: Nat. Intell.
– volume: 36
  start-page: 224
  year: 2005
  ident: ref_12
  article-title: Entropy and statistical complexity in brain activity
  publication-title: Eur. News
  doi: 10.1051/epn:2005614
– volume: 89
  start-page: 068102
  year: 2002
  ident: ref_14
  article-title: Multiscale entropy analysis of complex physiological time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.068102
– volume: 356
  start-page: 114
  year: 2005
  ident: ref_9
  article-title: Ordinal analysis of time series
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.05.022
– volume: 8
  start-page: 1
  year: 2006
  ident: ref_16
  article-title: Multiscale entropy analysis: A new method to detect determinism in a time series
  publication-title: Entropy
– volume: 13
  start-page: 2657
  year: 2003
  ident: ref_17
  article-title: Symbolic analysis of high-dimensional time series
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127403008168
– volume: 27
  start-page: 1091
  year: 2006
  ident: ref_20
  article-title: Analysis of electroencephalograms in Alzheimer’s Disease patients with multiscale entropy
  publication-title: Phys. Meas.
  doi: 10.1088/0967-3334/27/11/004
– volume: 2011
  start-page: 539621
  year: 2011
  ident: ref_6
  article-title: Slowing and loss of complexity in Alzheimer’s EEG: Two sides of the same coin?
  publication-title: Int. J. Alzheimer’s Dis.
  doi: 10.4061/2011/539621
– volume: 99
  start-page: 2466
  year: 2002
  ident: ref_3
  article-title: Fractal dynamics in physiology: Alterations with disease and aging
  publication-title: Nat. Acad. Sci.
  doi: 10.1073/pnas.012579499
– ident: ref_4
– volume: 120
  start-page: 476
  year: 2009
  ident: ref_23
  article-title: Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.12.043
– volume: 84
  start-page: 061918
  year: 2011
  ident: ref_7
  article-title: Multivariate multiscale entropy: A tool for complexity analysis of multichannel data
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.061918
– volume: 27
  start-page: 835
  year: 2005
  ident: ref_2
  article-title: Altered generation of spontaneous oscillations in Alzheimer’s Disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.011
– volume: 88
  start-page: 174102
  year: 2002
  ident: ref_1
  article-title: Permutation entropy: A natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– ident: ref_10
  doi: 10.1109/MeMeA.2011.5966762
– volume: 4
  start-page: 223
  year: 2010
  ident: ref_15
  article-title: Entropy and complexity analyses in Alzheimer’s Disease: An MEG study
  publication-title: Open Biomed. Eng. J.
  doi: 10.2174/1874120701004010223
– volume: 59
  start-page: 12
  year: 2012
  ident: ref_25
  article-title: Adaptive multiscale entropy analysis of multivariate neural data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2162511
– volume: 27
  start-page: 241
  year: 2006
  ident: ref_18
  article-title: Entropy analysis of the EEG background activity in Alzheimer’s Disease patients
  publication-title: Phys. Meas.
  doi: 10.1088/0967-3334/27/3/003
– volume: 101
  start-page: 810
  year: 2008
  ident: ref_13
  article-title: Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect
  publication-title: Br. J. Anaesthesia
  doi: 10.1093/bja/aen290
SSID ssj0023216
Score 2.4196453
Snippet An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1186
SubjectTerms Alzheimer’s Disease
biomedical signal analysis
complexity
multi-scale entropy
multivariate permutation entropy
permutation entropy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XryIouLqKkEEvRS7TdomJ3G1KoIiPsBbyWOiwrq77kPQX--kza6C4rHt9DLJTL4vk3xDyJ7KEyUY8yV_CRE3kkcyEToSCnTumHGuKhdcXWcXD_zyMX0MG26jcKxymhOrRG37xu-RH2Jk5rnwAmpHg7fId43y1dXQQmOeLGAKFki-FjrF9c3tjHKxpJ3VekIMyf0htD1_afuL0z9WoUqs_1curhaYs2WyFJAhPa6HcoXMQW-VlNUF2XcktIgJafUQ3aFbgd5gSp3UdXRa-OPmgw-KAJT6APcil-MPOhUcoX1Hj7ufz_DyCsP9ET2tizK0KM7XyP1ZcX9yEYWeCJHhCR9H2vprUoLZSpjdmgSMBQcstqmTSiOYSnMJClGVMCrNOPo7lbFuZyrTkFm2Thq9fg82CBUms4rhrwJD0iHv0sg8pORKQmrzWDbJwdRFpQl64b5tRbdE3uC9Wc682SS7M9NBLZLxl1HH-3lm4HWtqxf94VMZwqSE2GXa74NwpThTscyBpyaX0sQ6cTJpktZ0lMoQbKPye2ps_v95iywi3gmnbVukMR5OYBsxxVjvhInzBSgEzNs
  priority: 102
  providerName: ProQuest
Title Multivariate Multi-Scale Permutation Entropy for Complexity Analysis of Alzheimer’s Disease EEG
URI https://www.proquest.com/docview/1537780876
https://doaj.org/article/e0f6b19874aa43a097e45c799c0b2f92
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA1-vPgiiorTOYL44EtZ16Rt8uhHNxEcQyfsrSTpDQpzyj4EffJv-Pf8Jd6k3Rgo-OLLoCOl5dzm5hxuci4hJyqNlGDMlfwlBNxIHshI6EAo0KllxlpfLrjpJlf3_HoQD5Zafbk9YaU9cAlcE0KbaKeMuVKcqVCmwGOTSmlCHVnpsy-ueXMxVUktFvmmp67sE3AWhqWnEEOB34SW0zAtd3h6aSXyhv0_8rFfZNpbZLNih_SsfKttsgKjHaL8IdlXFLXIC6m_CO4QWqA9TKuzspZOM7fl_OWNIgmlbpI7o8vpG52bjtBnS8-G7w_w-ATjr4_PCb0sSzM0yzq7pN_O-hdXQdUZITA84tNAF-6wlGCFt2cvTASmAAssLGIrlUZKFacSFHIrYVSccEQ9lqFuJSrRkBRsj6yNnkewT6gwSaEY3ipwYlpUXxr1h5RcSYiLNJQ1cjoHKTeVa7hrXjHMUT04PPMFnjVyvBj6Ulpl_Dbo3CG9GODcrf0fGPO8inn-V8xrpD6PU15NuUmOqTtNhXPYO_iPZxySDeRG1c7cOlmbjmdwhPxjqhtkVbQ7DbJ-nnV7tw3_4eFvZ9D6BhuD2ss
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeIAXBAJEYYCFQPASLY2dxH6Y0GDtOvYhJIq0N8sfZzZptKXthsr_xP_InZMUJBBve0ziRNH57vw7n-93jL20dWGVEJTy15BJr2WmC-UyZcHVUfgYU7rg-KQafZYfTsvTDfazq4WhY5WdT0yOOkw97ZFvo2XWtSICtbezbxl1jaLsatdCo1GLQ1h9x5BtsXOwh_P7qiiGg_H7UdZ2Fci8LOQyc4EKjZQIido8-AJ8gAgiD2XU1iEcKWsNFnGJ8rasJP5xqXPXr2zloAoCP3uD3ZRCaDIoNdxfx3ei6FcNeRE-zLehT8FSn6q0_1jyUmeAvxx_Ws2Gd9mdFoby3UZv7rENmNxnJlXjXmH0jACUp4vsE84h8I_ovy-bpD0f0Nn22Yoj2uXkTYhRc7niHbsJn0a-e_HjDM6_wvz1gu81GSA-GOw_YOPrENVDtjmZTuAR48pXwQp8VaH9RwzyHIY5WkuroQx1rnvsTSci41tycuqRcWEwSCFpmrU0e-zFeuisYeT416B3JOf1ACLRTjem8y-mtUkDeawcbbpIa6Wwua5Blr7W2ueuiLrosa1ulkxr2QvzWw8f___xc3ZrND4-MkcHJ4dP2G0EWu0x3y22uZxfwlMEM0v3LKkQZ-aaVfYXLwMIJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJcEAgQKQUsBILLKhvb-_ABoZZsaClEERSpN8uPMSCVJCQpKPwz_h3jfQQkELced9e7Wo3H4_k8M98APDYFN6UQMeSvMJFOyUTx0ialQVsE4UKowwVvJ_nRB_n6LDvbgZ9dLUxMq-xsYm2o_dzFM_IBrcyiKCOB2iC0aRHT0fjF4msSO0jFSGvXTqNRkRPcfCf4tnp-PKK5fsL5uDp9eZS0HQYSJ7lcJ9bHoqNS-Jrm3DuOzmNAkfosKGPJNckKhYZ8lNKZLJf095lK7TA3ucXcC_rsFdgtCBSlPdg9rCbTd1u0J_gwb6iMhFDpAIcROg1jzfYfG2DdJ-CvbaDe28Y34HrrlLKDRotuwg7OboGua3O_EZYmd5TVF8l7mlFkU7LmF00In1Ux032xYeT7smhbIr_mesM6rhM2D-zg_Mcn_PwFl09XbNTEg1hVvboNp5chrDvQm81neBdY6XJvBL1akjUIBPksgR6lpFGY-SJVfXjWiUi7lqo8dsw41wRZojT1Vpp9eLQdumj4Of416DDKeTsgUmrXN-bLj7pdoRrTkNt4BCONkcKkqkCZuUIpl1oeFO_DfjdLul3nK_1bK_f-__ghXCV11W-OJyf34Bp5XW3O7z701ssLvE-ezdo-aHWIgb5krf0FpNcNtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Multi-Scale+Permutation+Entropy+for+Complexity+Analysis+of+Alzheimer%E2%80%99s+Disease+EEG&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Isabella+Palamara&rft.au=Giuseppe+Morabito&rft.au=Alessia+Bramanti&rft.au=Fabio+La+Foresta&rft.date=2012-07-01&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=14&rft.issue=7&rft.spage=1186&rft.epage=1202&rft_id=info:doi/10.3390%2Fe14071186&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0f6b19874aa43a097e45c799c0b2f92
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon