Multivariate Multi-Scale Permutation Entropy for Complexity Analysis of Alzheimer’s Disease EEG
An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Per...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 14; no. 7; pp. 1186 - 1202 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1099-4300 1099-4300 |
DOI | 10.3390/e14071186 |
Cover
Loading…
Abstract | An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Permutation Entropy, a methodology for time series processing based on ordinal analysis. Permutation Entropy is conceptually simple, structurally robust to noise and artifacts, computationally very fast, which is relevant for designing portable diagnostics. Since time series derived from biological systems show structures on multiple spatial-temporal scales, the proposed technique can be useful for other types of biomedical signal analysis. In this work, the possibility of distinguish among the brain states related to Alzheimer’s disease patients and Mild Cognitive Impaired subjects from normal healthy elderly is checked on a real, although quite limited, experimental database. |
---|---|
AbstractList | An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Permutation Entropy, a methodology for time series processing based on ordinal analysis. Permutation Entropy is conceptually simple, structurally robust to noise and artifacts, computationally very fast, which is relevant for designing portable diagnostics. Since time series derived from biological systems show structures on multiple spatial-temporal scales, the proposed technique can be useful for other types of biomedical signal analysis. In this work, the possibility of distinguish among the brain states related to Alzheimer's disease patients and Mild Cognitive Impaired subjects from normal healthy elderly is checked on a real, although quite limited, experimental database. |
Author | Morabito, Giuseppe Labate, Domenico La Foresta, Fabio Morabito, Francesco Carlo Bramanti, Alessia Palamara, Isabella |
Author_xml | – sequence: 1 givenname: Francesco Carlo surname: Morabito fullname: Morabito, Francesco Carlo – sequence: 2 givenname: Domenico surname: Labate fullname: Labate, Domenico – sequence: 3 givenname: Fabio surname: La Foresta fullname: La Foresta, Fabio – sequence: 4 givenname: Alessia surname: Bramanti fullname: Bramanti, Alessia – sequence: 5 givenname: Giuseppe surname: Morabito fullname: Morabito, Giuseppe – sequence: 6 givenname: Isabella surname: Palamara fullname: Palamara, Isabella |
BookMark | eNptkc1OGzEQx62KSgXaQ9_AEqceFvyxttfHKE0BCUSlcrdmvePiaLNObaciPfEavB5PQkoqVFU9zYd-8x_N_I_IwZQmJOQjZ6dSWnaGvGWG806_IYecWdu0krGDv_J35KiUJWNCCq4PCVxvxhp_Qo5Qkb4UzTcPI9KvmFebCjWmiS6mmtN6S0PKdJ5W6xHvY93S2QTjtsRCU6Cz8dcdxhXmp4fHQj_HglCQLhbn78nbAGPBD3_iMbn9sridXzRXN-eX89lV41vR1qYfVCdlJwcujGKDF-gHDCjZoIKFXgitjEVQQnQelG5NkMqynmvQPepBHpPLveyQYOnWOa4gb12C6F4aKX93kGv0IzpkQffcdqYFaCUwa7BV3ljrWS-CFTutk73WOqcfGyzVLdMm744tjitpTMc6o3fUpz3lcyolY3jdypn7bYZ7NWPHnv3D-rj_bc0Qx_9MPANBu43d |
CitedBy_id | crossref_primary_10_1109_JSEN_2013_2263794 crossref_primary_10_3390_e21100959 crossref_primary_10_1063_5_0223168 crossref_primary_10_1016_j_cmpb_2023_107941 crossref_primary_10_25046_aj060514 crossref_primary_10_3390_e26090728 crossref_primary_10_1016_j_asoc_2024_112222 crossref_primary_10_3389_fnins_2020_562132 crossref_primary_10_1016_j_measurement_2019_107233 crossref_primary_10_1109_TNNLS_2018_2791644 crossref_primary_10_1177_10775463241227473 crossref_primary_10_1007_s00362_020_01171_7 crossref_primary_10_1080_10255842_2024_2423268 crossref_primary_10_1016_j_iot_2019_03_002 crossref_primary_10_1109_JSEN_2013_2271735 crossref_primary_10_1007_s11571_017_9467_8 crossref_primary_10_1177_01423312241257143 crossref_primary_10_1016_j_physa_2019_122674 crossref_primary_10_1007_s11277_020_07742_z crossref_primary_10_3390_e18050184 crossref_primary_10_1007_s11517_017_1734_7 crossref_primary_10_1016_j_chaos_2023_114158 crossref_primary_10_1063_5_0136181 crossref_primary_10_3390_e16126212 crossref_primary_10_3390_e19100557 crossref_primary_10_3390_s18041160 crossref_primary_10_1098_rsta_2014_0091 crossref_primary_10_1103_PhysRevE_94_022118 crossref_primary_10_3390_e20030148 crossref_primary_10_3390_e24010102 crossref_primary_10_3389_fnagi_2022_888577 crossref_primary_10_1007_s12206_017_0514_5 crossref_primary_10_3390_app7010092 crossref_primary_10_1142_S0129065721300023 crossref_primary_10_1016_j_neunet_2014_01_006 crossref_primary_10_1140_epjst_e2013_01840_1 crossref_primary_10_1007_s11071_020_05826_w crossref_primary_10_3390_e21010011 crossref_primary_10_1155_2024_8813251 crossref_primary_10_3390_e14112157 crossref_primary_10_1109_TNSRE_2022_3182705 crossref_primary_10_3390_e23020244 crossref_primary_10_1016_j_compbiomed_2021_104799 crossref_primary_10_3934_dcdsb_2015_20_3301 crossref_primary_10_1016_j_cmpb_2021_106116 crossref_primary_10_3390_e25030396 crossref_primary_10_1029_2021JA030200 crossref_primary_10_1142_S0129065715500057 crossref_primary_10_1142_S0217979218500868 crossref_primary_10_1063_5_0132602 crossref_primary_10_1155_2021_3839800 crossref_primary_10_1007_s10548_017_0599_2 crossref_primary_10_1007_s12652_020_02824_z crossref_primary_10_1016_j_physa_2019_123099 crossref_primary_10_1016_j_physleta_2017_03_052 crossref_primary_10_3390_e19010031 crossref_primary_10_1063_5_0010462 crossref_primary_10_1016_j_biopsycho_2017_05_005 crossref_primary_10_1142_S0129065712500244 crossref_primary_10_3390_e22010116 crossref_primary_10_1109_ACCESS_2019_2918560 crossref_primary_10_1155_2016_3109385 crossref_primary_10_1515_bmt_2017_0041 crossref_primary_10_1016_j_physa_2020_125081 crossref_primary_10_3390_e22030347 crossref_primary_10_3390_e26121126 crossref_primary_10_4018_ijmtie_2012100102 crossref_primary_10_1142_S0129065716500398 crossref_primary_10_1016_j_brainresbull_2015_05_001 crossref_primary_10_1177_1687814016676157 crossref_primary_10_3390_e19120692 crossref_primary_10_3390_s23167137 crossref_primary_10_1109_ACCESS_2022_3165199 crossref_primary_10_1016_j_apenergy_2021_117992 crossref_primary_10_1049_htl_2014_0106 crossref_primary_10_1016_j_jhydrol_2020_125801 crossref_primary_10_1109_TIE_2021_3063979 crossref_primary_10_3390_e17063595 crossref_primary_10_1007_s11770_022_0926_6 crossref_primary_10_3390_e21090868 crossref_primary_10_1142_S0129065718500387 crossref_primary_10_3390_s20113159 crossref_primary_10_3389_fnhum_2015_00367 crossref_primary_10_1063_1_4917013 crossref_primary_10_1142_S0218348X21500481 crossref_primary_10_1063_5_0049901 crossref_primary_10_12677_CSA_2022_123059 crossref_primary_10_3390_e19040141 crossref_primary_10_1007_s11071_019_04933_7 crossref_primary_10_1016_j_bspc_2017_08_012 crossref_primary_10_3390_e15031069 crossref_primary_10_3389_fnagi_2017_00378 crossref_primary_10_1142_S0129065717500204 crossref_primary_10_1177_1077546319877711 crossref_primary_10_1109_JBHI_2022_3187346 crossref_primary_10_1109_JSEN_2013_2257742 crossref_primary_10_1155_2017_1254310 crossref_primary_10_1007_s10044_020_00910_8 crossref_primary_10_1007_s11071_024_10732_6 crossref_primary_10_1016_j_bspc_2020_101927 crossref_primary_10_3390_e24091287 crossref_primary_10_1016_j_chaos_2022_112795 crossref_primary_10_1371_journal_pone_0163940 crossref_primary_10_3390_e19100516 crossref_primary_10_1016_j_neubiorev_2023_105070 crossref_primary_10_3390_electronics13142881 crossref_primary_10_1109_JLT_2018_2802324 crossref_primary_10_1016_j_bspc_2018_08_004 crossref_primary_10_1016_j_engstruct_2022_114479 crossref_primary_10_3390_e24010026 crossref_primary_10_3390_e25111477 crossref_primary_10_3390_e23050617 crossref_primary_10_5812_archneurosci_61161 crossref_primary_10_1016_j_bbr_2016_02_035 crossref_primary_10_1155_2014_471356 crossref_primary_10_1016_j_physa_2016_07_077 crossref_primary_10_1109_TBME_2022_3207582 crossref_primary_10_1016_j_clinph_2014_07_011 crossref_primary_10_1371_journal_pone_0164104 crossref_primary_10_1016_j_expthermflusci_2018_06_009 crossref_primary_10_3390_axioms12111026 crossref_primary_10_3390_e21101023 crossref_primary_10_3389_fnins_2018_00677 crossref_primary_10_3390_e24121752 crossref_primary_10_1109_TBME_2017_2679136 crossref_primary_10_1038_s41598_024_66953_7 crossref_primary_10_1016_j_physa_2020_124485 crossref_primary_10_1016_j_compbiomed_2019_04_038 crossref_primary_10_1063_1_5022021 crossref_primary_10_1109_JBHI_2023_3307606 crossref_primary_10_1109_JSEN_2013_2272802 crossref_primary_10_3390_s16030336 crossref_primary_10_3390_e19050197 crossref_primary_10_3390_e17106834 crossref_primary_10_3390_e19050196 crossref_primary_10_3390_e21090913 crossref_primary_10_1016_j_ins_2014_06_028 crossref_primary_10_1142_S0219477522500110 crossref_primary_10_3390_e24020160 crossref_primary_10_1007_s11071_020_05733_0 crossref_primary_10_1177_10963480231198539 crossref_primary_10_1007_s10950_016_9632_2 crossref_primary_10_1016_j_bspc_2022_104301 crossref_primary_10_1016_j_bspc_2024_106124 crossref_primary_10_1016_j_dsp_2022_103884 crossref_primary_10_3389_fphys_2018_01511 crossref_primary_10_3390_a12090184 crossref_primary_10_3390_e22020189 crossref_primary_10_1109_ACCESS_2020_2975875 crossref_primary_10_1080_13683500_2023_2202308 crossref_primary_10_1016_j_neucom_2017_09_007 crossref_primary_10_3390_e16115668 crossref_primary_10_1007_s13540_023_00155_2 crossref_primary_10_1016_j_bspc_2015_08_004 crossref_primary_10_1007_s11571_016_9418_9 crossref_primary_10_1016_j_chaos_2024_115128 crossref_primary_10_1088_1742_6596_1072_1_012012 crossref_primary_10_3390_e16063049 crossref_primary_10_3390_e20030161 crossref_primary_10_3934_mbe_2022604 crossref_primary_10_1142_S0219477517500195 crossref_primary_10_1186_s40708_021_00130_8 crossref_primary_10_3390_s130810151 crossref_primary_10_1140_epjst_e2018_700098_x |
Cites_doi | 10.1109/LSP.2011.2180713 10.1097/ALN.0b013e318222ac02 10.1016/j.clinph.2004.01.001 10.1109/INMIC.2005.334494 10.1142/S0218348X07003691 10.1051/epn:2005614 10.1103/PhysRevLett.89.068102 10.1016/j.physa.2005.05.022 10.1142/S0218127403008168 10.1088/0967-3334/27/11/004 10.4061/2011/539621 10.1073/pnas.012579499 10.1016/j.clinph.2008.12.043 10.1103/PhysRevE.84.061918 10.1016/j.neuroimage.2005.05.011 10.1103/PhysRevLett.88.174102 10.1109/MeMeA.2011.5966762 10.2174/1874120701004010223 10.1109/TBME.2011.2162511 10.1088/0967-3334/27/3/003 10.1093/bja/aen290 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2012 |
Copyright_xml | – notice: Copyright MDPI AG 2012 |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/e14071186 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Collection (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
EndPage | 1202 |
ExternalDocumentID | oai_doaj_org_article_e0f6b19874aa43a097e45c799c0b2f92 3340671571 10_3390_e14071186 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IPNFZ J9A KQ8 L6V M7S MODMG M~E OK1 OVT PHGZM PHGZT PIMPY PROAC PTHSS RIG RNS TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c424t-bd583383d12750dc2ecdefe30d5f9ab226579ea5228ca5647f3590b16a6be6d3 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:19:11 EDT 2025 Fri Jul 25 12:02:03 EDT 2025 Tue Jul 01 05:08:39 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-bd583383d12750dc2ecdefe30d5f9ab226579ea5228ca5647f3590b16a6be6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/e0f6b19874aa43a097e45c799c0b2f92 |
PQID | 1537780876 |
PQPubID | 2032401 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0f6b19874aa43a097e45c799c0b2f92 proquest_journals_1537780876 crossref_primary_10_3390_e14071186 crossref_citationtrail_10_3390_e14071186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationYear | 2012 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Osipova (ref_2) 2005; 27 Costa (ref_14) 2002; 89 Hornero (ref_15) 2010; 4 ref_10 Keller (ref_9) 2005; 356 Mizuno (ref_24) 2010; 27 Morabito (ref_22) 2011; 1 Silva (ref_11) 2011; 115 Plastino (ref_12) 2005; 36 Ahmed (ref_7) 2011; 84 Sarkar (ref_16) 2006; 8 Abasolo (ref_18) 2006; 27 Keller (ref_17) 2003; 13 Takahashi (ref_23) 2009; 120 Goldeberger (ref_3) 2002; 99 Ahmed (ref_8) 2012; 19 Park (ref_19) 2007; 15 Hu (ref_25) 2012; 59 Jeong (ref_5) 2004; 115 ref_21 Escudero (ref_20) 2006; 27 Olofsen (ref_13) 2008; 101 Dauwels (ref_6) 2011; 2011 Bandt (ref_1) 2002; 88 ref_4 |
References_xml | – volume: 19 start-page: 91 year: 2012 ident: ref_8 article-title: Multivariate multiscale entropy publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2011.2180713 – volume: 115 start-page: 303 year: 2011 ident: ref_11 article-title: Performance of anaesthetic depht indexes in rabbits under propofol anaesthetia publication-title: Anesthesiology doi: 10.1097/ALN.0b013e318222ac02 – volume: 115 start-page: 1490 year: 2004 ident: ref_5 article-title: EEG Dynamics in Patients with Alzheimer’s Disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.01.001 – ident: ref_21 doi: 10.1109/INMIC.2005.334494 – volume: 27 start-page: 1091 year: 2010 ident: ref_24 article-title: Assessment of EEG dynamical complexity in Alzheimer’s Disease using multiscale entropy publication-title: Clin. Neurophysiol. – volume: 15 start-page: 339 year: 2007 ident: ref_19 article-title: Multiscale entropy analysis of EEG from patients under different pathological condition publication-title: Fractals doi: 10.1142/S0218348X07003691 – volume: 1 start-page: 30 year: 2011 ident: ref_22 article-title: Early detection of Alzheimer’s onset with permutation entropy analysis of EEG publication-title: Nat. Intell. – volume: 36 start-page: 224 year: 2005 ident: ref_12 article-title: Entropy and statistical complexity in brain activity publication-title: Eur. News doi: 10.1051/epn:2005614 – volume: 89 start-page: 068102 year: 2002 ident: ref_14 article-title: Multiscale entropy analysis of complex physiological time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.068102 – volume: 356 start-page: 114 year: 2005 ident: ref_9 article-title: Ordinal analysis of time series publication-title: Physica A doi: 10.1016/j.physa.2005.05.022 – volume: 8 start-page: 1 year: 2006 ident: ref_16 article-title: Multiscale entropy analysis: A new method to detect determinism in a time series publication-title: Entropy – volume: 13 start-page: 2657 year: 2003 ident: ref_17 article-title: Symbolic analysis of high-dimensional time series publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127403008168 – volume: 27 start-page: 1091 year: 2006 ident: ref_20 article-title: Analysis of electroencephalograms in Alzheimer’s Disease patients with multiscale entropy publication-title: Phys. Meas. doi: 10.1088/0967-3334/27/11/004 – volume: 2011 start-page: 539621 year: 2011 ident: ref_6 article-title: Slowing and loss of complexity in Alzheimer’s EEG: Two sides of the same coin? publication-title: Int. J. Alzheimer’s Dis. doi: 10.4061/2011/539621 – volume: 99 start-page: 2466 year: 2002 ident: ref_3 article-title: Fractal dynamics in physiology: Alterations with disease and aging publication-title: Nat. Acad. Sci. doi: 10.1073/pnas.012579499 – ident: ref_4 – volume: 120 start-page: 476 year: 2009 ident: ref_23 article-title: Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.12.043 – volume: 84 start-page: 061918 year: 2011 ident: ref_7 article-title: Multivariate multiscale entropy: A tool for complexity analysis of multichannel data publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.061918 – volume: 27 start-page: 835 year: 2005 ident: ref_2 article-title: Altered generation of spontaneous oscillations in Alzheimer’s Disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.011 – volume: 88 start-page: 174102 year: 2002 ident: ref_1 article-title: Permutation entropy: A natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – ident: ref_10 doi: 10.1109/MeMeA.2011.5966762 – volume: 4 start-page: 223 year: 2010 ident: ref_15 article-title: Entropy and complexity analyses in Alzheimer’s Disease: An MEG study publication-title: Open Biomed. Eng. J. doi: 10.2174/1874120701004010223 – volume: 59 start-page: 12 year: 2012 ident: ref_25 article-title: Adaptive multiscale entropy analysis of multivariate neural data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2162511 – volume: 27 start-page: 241 year: 2006 ident: ref_18 article-title: Entropy analysis of the EEG background activity in Alzheimer’s Disease patients publication-title: Phys. Meas. doi: 10.1088/0967-3334/27/3/003 – volume: 101 start-page: 810 year: 2008 ident: ref_13 article-title: Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect publication-title: Br. J. Anaesthesia doi: 10.1093/bja/aen290 |
SSID | ssj0023216 |
Score | 2.4196453 |
Snippet | An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1186 |
SubjectTerms | Alzheimer’s Disease biomedical signal analysis complexity multi-scale entropy multivariate permutation entropy permutation entropy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XryIouLqKkEEvRS7TdomJ3G1KoIiPsBbyWOiwrq77kPQX--kza6C4rHt9DLJTL4vk3xDyJ7KEyUY8yV_CRE3kkcyEToSCnTumHGuKhdcXWcXD_zyMX0MG26jcKxymhOrRG37xu-RH2Jk5rnwAmpHg7fId43y1dXQQmOeLGAKFki-FjrF9c3tjHKxpJ3VekIMyf0htD1_afuL0z9WoUqs_1curhaYs2WyFJAhPa6HcoXMQW-VlNUF2XcktIgJafUQ3aFbgd5gSp3UdXRa-OPmgw-KAJT6APcil-MPOhUcoX1Hj7ufz_DyCsP9ET2tizK0KM7XyP1ZcX9yEYWeCJHhCR9H2vprUoLZSpjdmgSMBQcstqmTSiOYSnMJClGVMCrNOPo7lbFuZyrTkFm2Thq9fg82CBUms4rhrwJD0iHv0sg8pORKQmrzWDbJwdRFpQl64b5tRbdE3uC9Wc682SS7M9NBLZLxl1HH-3lm4HWtqxf94VMZwqSE2GXa74NwpThTscyBpyaX0sQ6cTJpktZ0lMoQbKPye2ps_v95iywi3gmnbVukMR5OYBsxxVjvhInzBSgEzNs priority: 102 providerName: ProQuest |
Title | Multivariate Multi-Scale Permutation Entropy for Complexity Analysis of Alzheimer’s Disease EEG |
URI | https://www.proquest.com/docview/1537780876 https://doaj.org/article/e0f6b19874aa43a097e45c799c0b2f92 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA1-vPgiiorTOYL44EtZ16Rt8uhHNxEcQyfsrSTpDQpzyj4EffJv-Pf8Jd6k3Rgo-OLLoCOl5dzm5hxuci4hJyqNlGDMlfwlBNxIHshI6EAo0KllxlpfLrjpJlf3_HoQD5Zafbk9YaU9cAlcE0KbaKeMuVKcqVCmwGOTSmlCHVnpsy-ueXMxVUktFvmmp67sE3AWhqWnEEOB34SW0zAtd3h6aSXyhv0_8rFfZNpbZLNih_SsfKttsgKjHaL8IdlXFLXIC6m_CO4QWqA9TKuzspZOM7fl_OWNIgmlbpI7o8vpG52bjtBnS8-G7w_w-ATjr4_PCb0sSzM0yzq7pN_O-hdXQdUZITA84tNAF-6wlGCFt2cvTASmAAssLGIrlUZKFacSFHIrYVSccEQ9lqFuJSrRkBRsj6yNnkewT6gwSaEY3ipwYlpUXxr1h5RcSYiLNJQ1cjoHKTeVa7hrXjHMUT04PPMFnjVyvBj6Ulpl_Dbo3CG9GODcrf0fGPO8inn-V8xrpD6PU15NuUmOqTtNhXPYO_iPZxySDeRG1c7cOlmbjmdwhPxjqhtkVbQ7DbJ-nnV7tw3_4eFvZ9D6BhuD2ss |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeIAXBAJEYYCFQPASLY2dxH6Y0GDtOvYhJIq0N8sfZzZptKXthsr_xP_InZMUJBBve0ziRNH57vw7n-93jL20dWGVEJTy15BJr2WmC-UyZcHVUfgYU7rg-KQafZYfTsvTDfazq4WhY5WdT0yOOkw97ZFvo2XWtSICtbezbxl1jaLsatdCo1GLQ1h9x5BtsXOwh_P7qiiGg_H7UdZ2Fci8LOQyc4EKjZQIido8-AJ8gAgiD2XU1iEcKWsNFnGJ8rasJP5xqXPXr2zloAoCP3uD3ZRCaDIoNdxfx3ei6FcNeRE-zLehT8FSn6q0_1jyUmeAvxx_Ws2Gd9mdFoby3UZv7rENmNxnJlXjXmH0jACUp4vsE84h8I_ovy-bpD0f0Nn22Yoj2uXkTYhRc7niHbsJn0a-e_HjDM6_wvz1gu81GSA-GOw_YOPrENVDtjmZTuAR48pXwQp8VaH9RwzyHIY5WkuroQx1rnvsTSci41tycuqRcWEwSCFpmrU0e-zFeuisYeT416B3JOf1ACLRTjem8y-mtUkDeawcbbpIa6Wwua5Blr7W2ueuiLrosa1ulkxr2QvzWw8f___xc3ZrND4-MkcHJ4dP2G0EWu0x3y22uZxfwlMEM0v3LKkQZ-aaVfYXLwMIJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJcEAgQKQUsBILLKhvb-_ABoZZsaClEERSpN8uPMSCVJCQpKPwz_h3jfQQkELced9e7Wo3H4_k8M98APDYFN6UQMeSvMJFOyUTx0ialQVsE4UKowwVvJ_nRB_n6LDvbgZ9dLUxMq-xsYm2o_dzFM_IBrcyiKCOB2iC0aRHT0fjF4msSO0jFSGvXTqNRkRPcfCf4tnp-PKK5fsL5uDp9eZS0HQYSJ7lcJ9bHoqNS-Jrm3DuOzmNAkfosKGPJNckKhYZ8lNKZLJf095lK7TA3ucXcC_rsFdgtCBSlPdg9rCbTd1u0J_gwb6iMhFDpAIcROg1jzfYfG2DdJ-CvbaDe28Y34HrrlLKDRotuwg7OboGua3O_EZYmd5TVF8l7mlFkU7LmF00In1Ux032xYeT7smhbIr_mesM6rhM2D-zg_Mcn_PwFl09XbNTEg1hVvboNp5chrDvQm81neBdY6XJvBL1akjUIBPksgR6lpFGY-SJVfXjWiUi7lqo8dsw41wRZojT1Vpp9eLQdumj4Of416DDKeTsgUmrXN-bLj7pdoRrTkNt4BCONkcKkqkCZuUIpl1oeFO_DfjdLul3nK_1bK_f-__ghXCV11W-OJyf34Bp5XW3O7z701ssLvE-ezdo-aHWIgb5krf0FpNcNtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Multi-Scale+Permutation+Entropy+for+Complexity+Analysis+of+Alzheimer%E2%80%99s+Disease+EEG&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Isabella+Palamara&rft.au=Giuseppe+Morabito&rft.au=Alessia+Bramanti&rft.au=Fabio+La+Foresta&rft.date=2012-07-01&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=14&rft.issue=7&rft.spage=1186&rft.epage=1202&rft_id=info:doi/10.3390%2Fe14071186&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e0f6b19874aa43a097e45c799c0b2f92 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |