Multivariate Multi-Scale Permutation Entropy for Complexity Analysis of Alzheimer’s Disease EEG

An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Per...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 14; no. 7; pp. 1186 - 1202
Main Authors Morabito, Francesco Carlo, Labate, Domenico, La Foresta, Fabio, Bramanti, Alessia, Morabito, Giuseppe, Palamara, Isabella
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Permutation Entropy, a methodology for time series processing based on ordinal analysis. Permutation Entropy is conceptually simple, structurally robust to noise and artifacts, computationally very fast, which is relevant for designing portable diagnostics. Since time series derived from biological systems show structures on multiple spatial-temporal scales, the proposed technique can be useful for other types of biomedical signal analysis. In this work, the possibility of distinguish among the brain states related to Alzheimer’s disease patients and Mild Cognitive Impaired subjects from normal healthy elderly is checked on a real, although quite limited, experimental database.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1099-4300
1099-4300
DOI:10.3390/e14071186