Volume III. DUNE far detector technical coordination

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evoluti...

Full description

Saved in:
Bibliographic Details
Published inJournal of instrumentation Vol. 15; no. 8; p. T08009
Main Authors Abi, B., Acciarri, R., Acero, M.A., Adamov, G., Adams, D., Adinolfi, M., Ahmad, Z., Ahmed, J., Alion, T., Monsalve, S. Alonso, Alt, C., Anderson, J., Andreopoulos, C., Andrews, M., Andrianala, F., Andringa, S., Ankowski, A., Antonova, M., Antusch, S., Aranda-Fernandez, A., Ariga, A., Arnold, L.O., Arroyave, M.A., Asaadi, J., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, H., Back, J.J., Backhouse, C., Baesso, P., Bagby, L., Bajou, R., Balasubramanian, S., Baldi, P., Bambah, B., Barao, F., Barenboim, G., Barker, G., Barkhouse, W., Barnes, C., Barr, G., Monarca, J. Barranco, Barros, N., Barrow, J.L., Bashyal, A., Basque, V., Bay, F., Alba, J. Bazo, Beacom, J.F., Bechetoille, E., Behera, B., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Belver, D., Benekos, N., Neves, F. Bento, Berger, J., Berkman, S., Bernardini, P., Berner, R.M., Berns, H., Bertolucci, S., Betancourt, M., Bezawada, Y., Bhattacharjee, M., Bhuyan, B., Biagi, S., Bian, J., Biassoni, M., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Siffert, B. Blanco, Blaszczyk, F., Blazey, G., Blucher, E., Boissevain, J., Bolognesi, S., Bolton, T., Bonesini, M., Bongrand, M., Bonini, F., Booth, A., Booth, C., Bordoni, S., Borkum, A., Boschi, T., Bostan, N., Bour, P., Boyd, S., Boyden, D., Bracinik, J., Braga, D., Brailsford, D.
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 27.08.2020
Institute of Physics (IOP)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.
Bibliography:FERMILAB-PUB-20-026-ND; FERMILAB-DESIGN-2020-03; arXiv:2002.03008; LA-UR-20-28752
USDOE Office of Science (SC), High Energy Physics (HEP)
AC02-07CH11359; 89233218CNA000001; SC0010504; SC0007859; SC0008475
USDOE Laboratory Directed Research and Development (LDRD) Program
ISSN:1748-0221
1748-0221
DOI:10.1088/1748-0221/15/08/T08009