Antagonism of Bacillus spp. Isolated from Marine Biofilms Against Terrestrial Phytopathogenic Fungi

We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms against terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates) and Bacillus firmus (one isolate) displayed antagonistic activity against Colletotrichum gloeosp...

Full description

Saved in:
Bibliographic Details
Published inMarine biotechnology (New York, N.Y.) Vol. 11; no. 3; pp. 375 - 383
Main Authors Ortega-Morales, B. O, Ortega-Morales, F. N, Lara-Reyna, J, De la Rosa-García, S. C, Martínez-Hernández, A, Montero-M., Jorge
Format Journal Article
LanguageEnglish
Published New York New York : Springer-Verlag 01.06.2009
Springer-Verlag
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms against terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates) and Bacillus firmus (one isolate) displayed antagonistic activity against Colletotrichum gloeosporioides ATCC 42374, selected as first screen organism. The four isolates were further quantitatively tested against C. gloeosporioides, Colletotrichum fragariae, and Fusarium oxysporum on two culture media, potato dextrose agar (PDA) and a marine medium-based agar [yeast extract agar (YEA)] at different times of growth of the antagonists (early, co-inoculation with the pathogen and late). Overall antagonistic assays showed differential susceptibility among the pathogens as a function of the type of culture media and time of colonization (P < 0.05). In general, higher suppressive activities were recorded for assays performed on YEA than on PDA; and also when the antagonists were allowed to grow 24 h earlier than the pathogen. F. oxysporum was the most resistant fungus while the most sensitive was C. gloeosporioides ATCC 42374. Significant differences in antagonistic activity (P < 0.05) were found between the different isolates. In general, Bacillus sp. MC3B-22 displayed a greater antagonistic effect than the commercial biocontrol strain Bacillus subtilis G03 (Kodiak®). Further incubation studies and scanning electronic microscopy revealed that Bacillus sp. MC3B-22 was able to colonize, multiply, and inhibit C. gloeosporioides ATCC 42374 when tested in a mango leaf assay, showing its potential for fungal biocontrol. Additional studies are required to definitively identify the active isolates and to determine their mode of antifungal action, safety, and biocompatibility.
Bibliography:http://dx.doi.org/10.1007/s10126-008-9152-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1436-2228
1436-2236
DOI:10.1007/s10126-008-9152-3