Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction

Abstract Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals, and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies...

Full description

Saved in:
Bibliographic Details
Published inToxicological sciences Vol. 185; no. 1; pp. 64 - 76
Main Authors Zelko, Igor N, Dassanayaka, Sujith, Malovichko, Marina V, Howard, Caitlin M, Garrett, Lauren F, Uchida, Shizuka, Brittian, Kenneth R, Conklin, Daniel J, Jones, Steven P, Srivastava, Sanjay
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 28.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals, and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, and 6 weeks) or high-efficiency particulate absorbing-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone, and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5- to 2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/kfab125