Stereoscopic Estimation of Volcanic Ash Cloud-Top Height from Two Geostationary Satellites

The characterization of volcanic ash clouds released into the atmosphere during explosive eruptions includes cloud height as a fundamental physical parameter. A novel application is proposed of a method based on parallax data acquired from two geostationary instruments for estimating ash cloud-top h...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 8; no. 3; p. 206
Main Authors Merucci, Luca, Zaksek, Klemen, Carboni, Elisa, Corradini, Stefano
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The characterization of volcanic ash clouds released into the atmosphere during explosive eruptions includes cloud height as a fundamental physical parameter. A novel application is proposed of a method based on parallax data acquired from two geostationary instruments for estimating ash cloud-top height (ACTH). An improved version of the method with a detailed discussion of height retrieval accuracy was applied to estimate ACTH from two datasets acquired by two satellites in favorable positions to fully exploit the parallax effect. A combination of MSG SEVIRI (HRV band; 1000 m nadir spatial resolution, 5 min temporal resolution) and Meteosat-7 MVIRI (VIS band, 2500 m nadir spatial resolution, 30 min temporal resolution) was implemented. Since MVIRI does not acquire data at exactly the same time as SEVIRI, a correction procedure enables compensation for wind advection in the atmosphere. The method was applied to the Mt. Etna, Sicily, Italy, eruption of 23 November 2013. The height of the volcanic cloud was tracked with a top height of ~8.5 km. The ash cloud estimate was applied to the visible channels to show the potential accuracy that will soon be achievable also in the infrared range using the next generation of multispectral imagers. The new constellation of geostationary meteorological satellites will enable full exploitation of this technique for continuous global ACTH monitoring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs8030206