Over-expression in Escherichia coli of a thermally stable and regio-selective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D

The genes encoding a thermally stable and regio-selective nitrile hydratase (NHase) and an amidase from Comamonas testosteroni 5-MGAM-4D have been cloned and sequenced, and active NHase has been over-produced in Escherichia coli. Maximal activity requires co-expression of a small open reading frame...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 67; no. 5; pp. 664 - 670
Main Authors PETRILLO, Kelly L, SHIJUN WU, HANN, Eugenia C, COOLING, Frederick B, BEN-BASSAT, Arie, GAVAGAN, John E, DICOSIMO, Robert, PAYNE, Mark S
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.06.2005
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The genes encoding a thermally stable and regio-selective nitrile hydratase (NHase) and an amidase from Comamonas testosteroni 5-MGAM-4D have been cloned and sequenced, and active NHase has been over-produced in Escherichia coli. Maximal activity requires co-expression of a small open reading frame immediately downstream from the NHase beta subunit gene. Compared to the native organism, the E. coli biocatalyst has nearly threefold more NHase activity on a dry cell weight basis, and this activity is significantly more thermally stable. In addition, this biocatalyst converts a wide spectrum of nitrile substrates to the corresponding amides. Such versatility and robustness are desirable attributes of a biocatalyst intended for use in commercial applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-004-1842-9