A method to integrate and classify normal distributions

Univariate and multivariate normal probability distributions are widely used when modeling decisions under uncertainty. Computing the performance of such models requires integrating these distributions over specific domains, which can vary widely across models. Besides some special cases where these...

Full description

Saved in:
Bibliographic Details
Published inJournal of vision (Charlottesville, Va.) Vol. 21; no. 10; p. 1
Main Authors Das, Abhranil, Geisler, Wilson S.
Format Journal Article
LanguageEnglish
Published The Association for Research in Vision and Ophthalmology 01.09.2021
Online AccessGet full text
ISSN1534-7362
1534-7362
DOI10.1167/jov.21.10.1

Cover

Loading…
More Information
Summary:Univariate and multivariate normal probability distributions are widely used when modeling decisions under uncertainty. Computing the performance of such models requires integrating these distributions over specific domains, which can vary widely across models. Besides some special cases where these integrals are easy to calculate, there exist no general analytical expressions, standard numerical methods, or software for these integrals. Here we present mathematical results and open-source software that provide (a) the probability in any domain of a normal in any dimensions with any parameters; (b) the probability density, cumulative distribution, and inverse cumulative distribution of any function of a normal vector; (c) the classification errors among any number of normal distributions, the Bayes-optimal discriminability index, and relation to the receiver operating characteristic (ROC); (d) dimension reduction and visualizations for such problems; and (e) tests for how reliably these methods may be used on given data. We demonstrate these tools with vision research applications of detecting occluding objects in natural scenes and detecting camouflage.Univariate and multivariate normal probability distributions are widely used when modeling decisions under uncertainty. Computing the performance of such models requires integrating these distributions over specific domains, which can vary widely across models. Besides some special cases where these integrals are easy to calculate, there exist no general analytical expressions, standard numerical methods, or software for these integrals. Here we present mathematical results and open-source software that provide (a) the probability in any domain of a normal in any dimensions with any parameters; (b) the probability density, cumulative distribution, and inverse cumulative distribution of any function of a normal vector; (c) the classification errors among any number of normal distributions, the Bayes-optimal discriminability index, and relation to the receiver operating characteristic (ROC); (d) dimension reduction and visualizations for such problems; and (e) tests for how reliably these methods may be used on given data. We demonstrate these tools with vision research applications of detecting occluding objects in natural scenes and detecting camouflage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-7362
1534-7362
DOI:10.1167/jov.21.10.1