Decreased Speech-In-Noise Understanding in Young Adults with Tinnitus
Young people are often exposed to high music levels which make them more at risk to develop noise-induced symptoms such as hearing loss, hyperacusis, and tinnitus of which the latter is the symptom perceived the most by young adults. Although, subclinical neural damage was demonstrated in animal exp...
Saved in:
Published in | Frontiers in neuroscience Vol. 10; p. 288 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
28.06.2016
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2016.00288 |
Cover
Loading…
Summary: | Young people are often exposed to high music levels which make them more at risk to develop noise-induced symptoms such as hearing loss, hyperacusis, and tinnitus of which the latter is the symptom perceived the most by young adults. Although, subclinical neural damage was demonstrated in animal experiments, the human correlate remains under debate. Controversy exists on the underlying condition of young adults with normal hearing thresholds and noise-induced tinnitus (NIT) due to leisure noise. The present study aimed to assess differences in audiological characteristics between noise-exposed adolescents with and without NIT.
A group of 87 young adults with a history of recreational noise exposure was investigated by use of the following tests: otoscopy, impedance measurements, pure-tone audiometry including high-frequencies, transient and distortion product otoacoustic emissions, speech-in-noise testing with continuous and modulated noise (amplitude-modulated by 15 Hz), auditory brainstem responses (ABR) and questionnaires.Nineteen students reported NIT due to recreational noise exposure, and their measures were compared to the non-tinnitus subjects.
No significant differences between tinnitus and non-tinnitus subjects could be found for hearing thresholds, otoacoustic emissions, and ABR results.Tinnitus subjects had significantly worse speech reception in noise compared to non-tinnitus subjects for sentences embedded in steady-state noise (mean speech reception threshold (SRT) scores, respectively -5.77 and -6.90 dB SNR; p = 0.025) as well as for sentences embedded in 15 Hz AM-noise (mean SRT scores, respectively -13.04 and -15.17 dB SNR; p = 0.013). In both groups speech reception was significantly improved during AM-15 Hz noise compared to the steady-state noise condition (p < 0.001). However, the modulation masking release was not affected by the presence of NIT.
Young adults with and without NIT did not differ regarding audiometry, OAE, and ABR.However, tinnitus patients showed decreased speech-in-noise reception. The results are discussed in the light of previous findings suggestion NIT may occur in the absence of measurable peripheral damage as reflected in speech-in-noise deficits in tinnitus subjects. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Larry Roberts, McMaster University, Canada; Brandon Paul, McMaster University, Canada Edited by: Marc Schönwiesner, University of Montreal, Canada This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Neuroscience |
ISSN: | 1662-453X 1662-4548 1662-453X |
DOI: | 10.3389/fnins.2016.00288 |