Application of deep learning algorithms in geotechnical engineering: a short critical review

With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful feature learning and expression capabilities compared with the traditional machine learning (ML) methods, which att...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 54; no. 8; pp. 5633 - 5673
Main Authors Zhang, Wengang, Li, Hongrui, Li, Yongqin, Liu, Hanlong, Chen, Yumin, Ding, Xuanming
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful feature learning and expression capabilities compared with the traditional machine learning (ML) methods, which attracts worldwide researchers from different fields to its increasingly wide applications. Furthermore, in the field of geochnical engineering, DL has been widely adopted in various research topics, a comprehensive review summarizing its application is desirable. Consequently, this study presented the state of practice of DL in geotechnical engineering, and depicted the statistical trend of the published papers. Four major algorithms, including feedforward neural (FNN), recurrent neural network (RNN), convolutional neural network (CNN) and generative adversarial network (GAN) along with their geotechnical applications were elaborated. In addition, a thorough summary containing pubilished literatures, the corresponding reference cases, the adopted DL algorithms as well as the related geotechnical topics was compiled. Furthermore, the challenges and perspectives of future development of DL in geotechnical engineering were presented and discussed.
AbstractList With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful feature learning and expression capabilities compared with the traditional machine learning (ML) methods, which attracts worldwide researchers from different fields to its increasingly wide applications. Furthermore, in the field of geochnical engineering, DL has been widely adopted in various research topics, a comprehensive review summarizing its application is desirable. Consequently, this study presented the state of practice of DL in geotechnical engineering, and depicted the statistical trend of the published papers. Four major algorithms, including feedforward neural (FNN), recurrent neural network (RNN), convolutional neural network (CNN) and generative adversarial network (GAN) along with their geotechnical applications were elaborated. In addition, a thorough summary containing pubilished literatures, the corresponding reference cases, the adopted DL algorithms as well as the related geotechnical topics was compiled. Furthermore, the challenges and perspectives of future development of DL in geotechnical engineering were presented and discussed.
Audience Academic
Author Zhang, Wengang
Chen, Yumin
Li, Hongrui
Ding, Xuanming
Li, Yongqin
Liu, Hanlong
Author_xml – sequence: 1
  givenname: Wengang
  surname: Zhang
  fullname: Zhang, Wengang
  email: zhangwg@cqu.edu.cn
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University
– sequence: 2
  givenname: Hongrui
  surname: Li
  fullname: Li, Hongrui
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University
– sequence: 3
  givenname: Yongqin
  surname: Li
  fullname: Li, Yongqin
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University
– sequence: 4
  givenname: Hanlong
  surname: Liu
  fullname: Liu, Hanlong
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University
– sequence: 5
  givenname: Yumin
  surname: Chen
  fullname: Chen, Yumin
  organization: College of Civil and Transportation Engineering, Hohai University
– sequence: 6
  givenname: Xuanming
  surname: Ding
  fullname: Ding, Xuanming
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz1uT7Eey3krxCwpe9CaEbHZ2m7JN1mSr-O9Nu4LgoeQwMHmfTOaZoYl1FhC6pmRBCeG3gZKsYAlhNCFlWfCEnqEpzXma8NifoClhRZkwwegFmoWwJYTkLEun6H3Z953RajDOYtfgGqDHHShvjW2x6lrnzbDZBWwsbsENoDc2xjsMtjUWwMfYHVY4bJwfsI7h462HTwNfl-i8UV2Aq986R28P96-rp2T98vi8Wq4TnbFsSCgTBZSq0Eykpc64ILqoBdeNKktRaSFqyFklNFdpRXKqCG94VRaZEiQnrKLpHN2M7_befewhDHLr9t7GkZLlQlCRp1kRU4sx1aoOpLGNG7zS8dSwMzr6bEzsLzmNlhjPeATYCGjvQvDQyN6bnfLfkhJ50C5H7TJql0ft8vAX8Q_SZjjqjdNMdxpNRzT0B63g_9Y4Qf0A9kWY-A
CitedBy_id crossref_primary_10_3390_su131910541
crossref_primary_10_1002_gj_4976
crossref_primary_10_1109_TNNLS_2021_3117878
crossref_primary_10_1038_s41598_024_69316_4
crossref_primary_10_1080_1064119X_2024_2349801
crossref_primary_10_1007_s40891_023_00427_0
crossref_primary_10_1007_s41870_025_02416_0
crossref_primary_10_1007_s40808_022_01489_1
crossref_primary_10_3390_eng4020087
crossref_primary_10_1007_s42107_025_01287_x
crossref_primary_10_1007_s11440_022_01695_2
crossref_primary_10_1016_j_eswa_2025_127252
crossref_primary_10_3390_s22207814
crossref_primary_10_3390_app132011181
crossref_primary_10_1016_j_jrmge_2024_02_048
crossref_primary_10_1007_s40098_024_00957_y
crossref_primary_10_1016_j_ijdrr_2024_104966
crossref_primary_10_1007_s00603_024_04312_8
crossref_primary_10_1016_j_compgeo_2024_106085
crossref_primary_10_1016_j_autcon_2024_105678
crossref_primary_10_1007_s40098_024_00933_6
crossref_primary_10_1007_s11440_022_01590_w
crossref_primary_10_1007_s11709_023_0002_1
crossref_primary_10_1007_s40808_023_01823_1
crossref_primary_10_1038_s41598_024_62921_3
crossref_primary_10_1080_23311916_2025_2467144
crossref_primary_10_1088_1361_6463_ad11bb
crossref_primary_10_1016_j_aei_2022_101671
crossref_primary_10_1080_19648189_2024_2416441
crossref_primary_10_1016_j_istruc_2024_107369
crossref_primary_10_3390_su15021408
crossref_primary_10_1016_j_tust_2022_104405
crossref_primary_10_1007_s00521_022_07856_4
crossref_primary_10_1007_s41939_023_00154_z
crossref_primary_10_1007_s00603_023_03698_1
crossref_primary_10_3390_su15065470
crossref_primary_10_1007_s12517_022_09528_y
crossref_primary_10_1016_j_trgeo_2022_100745
crossref_primary_10_1007_s40515_025_00553_4
crossref_primary_10_1007_s11440_022_01777_1
crossref_primary_10_2166_aqua_2023_042
crossref_primary_10_3390_su15119024
crossref_primary_10_1016_j_tust_2024_106045
crossref_primary_10_31590_ejosat_1077867
crossref_primary_10_1108_ECAM_08_2024_1091
crossref_primary_10_3390_infrastructures7110148
crossref_primary_10_1063_5_0212652
crossref_primary_10_3389_feart_2022_857463
crossref_primary_10_3390_geotechnics5010005
crossref_primary_10_1007_s10462_025_11175_0
crossref_primary_10_1080_17499518_2021_1952612
crossref_primary_10_3390_land13101724
crossref_primary_10_1007_s11440_024_02472_z
crossref_primary_10_1007_s10064_023_03226_z
crossref_primary_10_1088_1755_1315_861_7_072036
crossref_primary_10_1016_j_tust_2023_105104
crossref_primary_10_3389_fbuil_2024_1495366
crossref_primary_10_1016_j_oregeorev_2023_105790
crossref_primary_10_1080_17499518_2022_2136717
crossref_primary_10_1016_j_physa_2022_128317
crossref_primary_10_1007_s11440_021_01326_2
crossref_primary_10_3390_mining5010020
crossref_primary_10_1016_j_conbuildmat_2023_132330
crossref_primary_10_1016_j_istruc_2024_107145
crossref_primary_10_1007_s10668_024_05595_1
crossref_primary_10_1007_s00603_023_03483_0
crossref_primary_10_3390_jmse12071099
crossref_primary_10_1080_19386362_2021_1968649
crossref_primary_10_1016_j_jrmge_2021_10_011
crossref_primary_10_1016_j_jrmge_2021_09_005
crossref_primary_10_1016_j_tust_2022_104843
crossref_primary_10_3390_app12199523
crossref_primary_10_1016_j_jrmge_2021_09_002
crossref_primary_10_1007_s12205_023_0355_y
crossref_primary_10_1016_j_coldregions_2022_103589
crossref_primary_10_1177_87552930231215243
crossref_primary_10_3390_s21186188
crossref_primary_10_1016_j_jrmge_2021_09_004
crossref_primary_10_1007_s42107_023_00693_3
crossref_primary_10_3390_buildings14020450
crossref_primary_10_3390_ma15124250
crossref_primary_10_1080_10408347_2023_2298328
crossref_primary_10_1007_s11440_022_01651_0
crossref_primary_10_1016_j_aei_2023_102032
crossref_primary_10_1007_s11440_021_01299_2
crossref_primary_10_1007_s10462_022_10147_y
crossref_primary_10_1177_03611981241257512
crossref_primary_10_1080_17499518_2023_2184479
crossref_primary_10_3390_w16233398
crossref_primary_10_3390_su152014708
crossref_primary_10_1016_j_jsv_2023_118075
crossref_primary_10_1016_j_engappai_2023_107663
crossref_primary_10_1016_j_seta_2022_102910
crossref_primary_10_1007_s12205_024_1432_6
crossref_primary_10_1007_s41062_022_00966_x
crossref_primary_10_1016_j_bspc_2023_105311
crossref_primary_10_1080_17499518_2024_2443457
crossref_primary_10_1016_j_tust_2022_104728
crossref_primary_10_1007_s11440_022_01736_w
crossref_primary_10_1109_ACCESS_2024_3424931
crossref_primary_10_1080_13467581_2024_2329358
crossref_primary_10_1016_j_buildenv_2023_110780
crossref_primary_10_1016_j_trgeo_2022_100783
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_3390_ma15249029
crossref_primary_10_3390_sym15112093
crossref_primary_10_1007_s11440_021_01358_8
crossref_primary_10_1080_19648189_2023_2205914
crossref_primary_10_1016_j_jrmge_2024_05_005
crossref_primary_10_1115_1_4067089
crossref_primary_10_1016_j_sasc_2024_200082
crossref_primary_10_3390_a15110428
crossref_primary_10_1002_nag_3372
crossref_primary_10_1007_s11440_023_02030_z
crossref_primary_10_1007_s10064_023_03074_x
crossref_primary_10_1007_s10706_024_03067_x
crossref_primary_10_3389_fmats_2021_798726
crossref_primary_10_1016_j_enggeo_2022_106899
crossref_primary_10_1007_s10064_024_03687_w
crossref_primary_10_1007_s11831_025_10244_5
crossref_primary_10_1007_s00603_023_03704_6
crossref_primary_10_1007_s11440_022_01783_3
crossref_primary_10_1007_s40098_024_00894_w
crossref_primary_10_1142_S1363919623400066
crossref_primary_10_3389_feart_2024_1340437
crossref_primary_10_1007_s12517_023_11268_6
crossref_primary_10_1007_s10706_024_02991_2
crossref_primary_10_1016_j_tust_2022_104830
crossref_primary_10_1016_j_soildyn_2024_108619
crossref_primary_10_1007_s11831_024_10154_y
crossref_primary_10_1016_j_autcon_2022_104488
crossref_primary_10_1007_s11771_023_5254_3
crossref_primary_10_1139_cgj_2024_0139
crossref_primary_10_1016_j_apor_2023_103597
crossref_primary_10_1038_s41598_022_17429_z
crossref_primary_10_3390_su15010784
crossref_primary_10_1007_s10462_021_10065_5
crossref_primary_10_1007_s12145_024_01435_y
crossref_primary_10_1016_j_heliyon_2023_e14465
crossref_primary_10_3390_su151713277
crossref_primary_10_1007_s11440_022_01685_4
crossref_primary_10_1007_s10064_022_02836_3
crossref_primary_10_1016_j_conbuildmat_2022_129503
crossref_primary_10_1016_j_cscm_2023_e02130
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_1007_s11440_021_01319_1
crossref_primary_10_1016_j_trgeo_2024_101419
crossref_primary_10_1016_j_autcon_2024_105819
crossref_primary_10_1007_s10706_023_02687_z
crossref_primary_10_3390_app14104223
crossref_primary_10_1515_jmbm_2022_0309
crossref_primary_10_1016_j_jrmge_2024_03_017
crossref_primary_10_1080_19424396_2023_2199910
crossref_primary_10_3233_IDA_220449
crossref_primary_10_1007_s11440_022_01461_4
crossref_primary_10_1016_j_cscm_2023_e02800
crossref_primary_10_3390_ma15082864
crossref_primary_10_1016_j_aei_2025_103180
crossref_primary_10_1016_j_undsp_2022_01_005
crossref_primary_10_1007_s10462_024_10836_w
crossref_primary_10_1007_s40808_022_01556_7
crossref_primary_10_1016_j_jrmge_2021_05_010
crossref_primary_10_3799_dqkx_2022_144
crossref_primary_10_1007_s11440_022_01571_z
crossref_primary_10_1080_17499518_2023_2182890
crossref_primary_10_1007_s11440_021_01240_7
crossref_primary_10_1007_s11440_021_01264_z
crossref_primary_10_1016_j_jrmge_2022_03_002
crossref_primary_10_1007_s11440_022_01495_8
crossref_primary_10_1016_j_jmrt_2022_02_123
crossref_primary_10_4018_IJGEE_298988
crossref_primary_10_3390_app132111966
crossref_primary_10_1007_s12393_024_09385_3
crossref_primary_10_1007_s43503_024_00020_y
crossref_primary_10_1016_j_ghm_2024_06_001
crossref_primary_10_3390_su152216125
crossref_primary_10_3390_buildings12111812
crossref_primary_10_1016_j_jrmge_2021_08_005
crossref_primary_10_1016_j_compgeo_2022_104733
crossref_primary_10_1016_j_trgeo_2025_101492
crossref_primary_10_1007_s11440_023_01874_9
crossref_primary_10_1007_s11440_023_01813_8
crossref_primary_10_3390_app13084897
crossref_primary_10_1016_j_conbuildmat_2023_131887
crossref_primary_10_1080_10589759_2024_2343943
crossref_primary_10_1016_j_jrmge_2021_08_011
crossref_primary_10_1016_j_coastaleng_2023_104291
crossref_primary_10_1007_s11709_022_0908_z
crossref_primary_10_1007_s00500_023_08053_8
crossref_primary_10_1016_j_compgeo_2025_107177
crossref_primary_10_1016_j_mtcomm_2024_108471
crossref_primary_10_1007_s11440_021_01383_7
crossref_primary_10_1016_j_conbuildmat_2022_127650
crossref_primary_10_1155_2024_3599911
crossref_primary_10_1038_s41597_024_03249_5
crossref_primary_10_1016_j_asoc_2023_110066
crossref_primary_10_3390_app14198695
crossref_primary_10_1016_j_compgeo_2022_105040
crossref_primary_10_1088_2631_8695_adad37
crossref_primary_10_1007_s11440_021_01360_0
crossref_primary_10_1007_s42461_023_00805_2
crossref_primary_10_7717_peerj_cs_2052
crossref_primary_10_1080_14680629_2022_2117063
crossref_primary_10_1002_gj_4936
crossref_primary_10_1016_j_mtcomm_2022_104615
crossref_primary_10_1021_acsomega_3c08169
crossref_primary_10_1016_j_jobe_2022_104847
crossref_primary_10_3390_su15129738
crossref_primary_10_1007_s10064_023_03516_6
crossref_primary_10_3390_electronics13030649
crossref_primary_10_1080_17499518_2023_2222383
crossref_primary_10_3390_buildings12030350
crossref_primary_10_1007_s10346_023_02166_9
crossref_primary_10_1016_j_jrmge_2022_04_012
crossref_primary_10_1016_j_jrmge_2021_07_007
crossref_primary_10_1016_j_jrmge_2023_02_025
crossref_primary_10_1016_j_jrmge_2021_12_011
crossref_primary_10_1007_s40515_025_00562_3
crossref_primary_10_1016_j_tust_2022_104453
crossref_primary_10_1109_ACCESS_2024_3385340
crossref_primary_10_2139_ssrn_4681718
crossref_primary_10_1007_s10706_024_02863_9
crossref_primary_10_1016_j_autcon_2021_103827
crossref_primary_10_1007_s40515_024_00411_9
crossref_primary_10_1016_j_compgeo_2023_105844
crossref_primary_10_1016_j_gsf_2021_101296
crossref_primary_10_1016_j_jrmge_2023_06_015
crossref_primary_10_1016_j_jrmge_2021_06_014
crossref_primary_10_1007_s40891_024_00533_7
crossref_primary_10_1016_j_jrmge_2021_06_012
crossref_primary_10_1016_j_tust_2023_105159
crossref_primary_10_1016_j_taml_2025_100578
crossref_primary_10_1007_s00603_022_03046_9
crossref_primary_10_1016_j_cageo_2024_105638
crossref_primary_10_1007_s10706_022_02351_y
crossref_primary_10_1007_s11709_024_1085_z
crossref_primary_10_1002_gj_5007
crossref_primary_10_1016_j_jrmge_2021_07_011
crossref_primary_10_1016_j_jrmge_2021_07_012
crossref_primary_10_1016_j_jrmge_2021_07_013
crossref_primary_10_1016_j_trgeo_2022_100827
crossref_primary_10_1007_s11440_022_01749_5
crossref_primary_10_1007_s12517_021_08319_1
crossref_primary_10_3390_en16041581
crossref_primary_10_1109_TGRS_2024_3443178
crossref_primary_10_1007_s11440_021_01257_y
crossref_primary_10_3390_app12031635
crossref_primary_10_1080_17499518_2023_2278136
crossref_primary_10_1080_17499518_2022_2083178
crossref_primary_10_1080_17499518_2023_2172188
crossref_primary_10_3390_app112110264
crossref_primary_10_1016_j_gsf_2023_101645
crossref_primary_10_1007_s13369_022_07091_y
crossref_primary_10_1139_cgj_2022_0696
crossref_primary_10_1002_gj_4605
crossref_primary_10_1007_s11771_024_5681_9
crossref_primary_10_1016_j_isprsjprs_2023_12_011
crossref_primary_10_1007_s40515_024_00396_5
crossref_primary_10_1016_j_engfailanal_2024_107998
crossref_primary_10_1016_j_autcon_2024_105894
crossref_primary_10_3390_rs16091535
crossref_primary_10_1038_s41598_023_29292_7
crossref_primary_10_3390_app132413170
crossref_primary_10_1061_IJGNAI_GMENG_8644
crossref_primary_10_3390_buildings14103279
crossref_primary_10_1080_17499518_2022_2087884
crossref_primary_10_1080_17538947_2024_2409337
crossref_primary_10_3390_electronics13153030
crossref_primary_10_1016_j_tust_2022_104428
crossref_primary_10_1016_j_engappai_2023_105990
crossref_primary_10_1016_j_conbuildmat_2024_136075
crossref_primary_10_1007_s11440_022_01450_7
crossref_primary_10_1109_TPAMI_2023_3307688
Cites_doi 10.1016/j.tust.2004.02.128
10.3390/s19010204
10.1007/s00521-016-2345-1
10.3390/rs11172046
10.3390/sym10010011
10.1109/5.726791
10.1016/j.ymssp.2020.107061
10.1007/s12517-017-3285-5
10.1007/s12205-018-2636-4
10.1016/j.tust.2016.12.004
10.3390/math7080755
10.1007/s10462-020-09835-4
10.3390/s18030821
10.1016/j.autcon.2016.03.015
10.1016/j.ijrmms.2018.08.003
10.1109/CVPR.2018.00702
10.1016/j.cageo.2020.104470
10.1061/(ASCE)CP.1943-5487.0000731
10.1061/(ASCE)0887-3801(2002)16:1(59)
10.1007/s10064-016-0937-8
10.1109/JSTARS.2020.2980895
10.3390/s18124436
10.1016/0148-9062(92)91044-6
10.1016/S0045-7949(98)00126-6
10.1016/j.gsf.2020.02.011
10.1016/j.gsf.2019.12.003
10.1016/S1452-3981(23)15062-0
10.1179/1939787914Y.0000000058
10.1109/72.554195
10.1109/ACCESS.2019.2961375
10.1016/j.tust.2005.02.001
10.1109/TPAMI.2017.2737631
10.1016/j.neunet.2018.12.006
10.3390/app9173484
10.3997/2214-4609.201700945
10.1007/s10462-020-09838-1
10.1155/2018/2837571
10.1016/j.gsf.2014.10.003
10.1109/CVPR.2018.00986
10.3390/app8122493
10.3390/app7010110
10.1109/ICMA.2017.8015785
10.1016/j.tust.2020.103593
10.1109/ACCESS.2020.3029562
10.1146/annurev-bioeng-071516-044442
10.1007/s00366-017-0545-7
10.1103/PhysRevE.101.023305
10.1109/ACCESS.2019.2916330
10.1007/s10462-020-09825-6
10.1061/(ASCE)CP.1943-5487.0000796
10.1109/IJCNN.2019.8852164
10.1016/j.undsp.2019.12.003
10.1080/17499518.2019.1674340
10.1109/ACCESS.2020.3015486
10.1109/CVPR.2019.00453
10.1016/j.compgeo.2009.11.005
10.1190/segam2016-13972613.1
10.1186/s40703-017-0067-6
10.1016/j.tust.2017.01.009
10.1007/s10596-020-09978-x
10.1109/CVPR.2018.00916
10.1088/1742-6596/364/1/012114
10.3208/sandf.48.141
10.1007/s00521-014-1690-1
10.1016/S0266-352X(03)00058-2
10.1016/j.petrol.2019.02.037
10.1109/ICCVW.2017.254
10.1109/ACCESS.2019.2917756
10.1016/j.media.2016.05.004
10.3390/ijgi7040158
10.1016/j.cageo.2019.104357
10.1155/2018/6245728
10.1109/YAC.2016.7804935
10.1049/ip-vis:19941301
10.1016/j.autcon.2017.11.002
10.21437/Interspeech.2014-443
10.1139/T07-052
10.1016/j.advwatres.2017.09.029
10.1029/2018GL078202
10.1016/j.autcon.2019.102840
10.1007/s12182-019-0328-4
10.1016/j.catena.2019.104426
10.3390/app9173553
10.1007/s12205-014-0316-6
10.1109/CVPR.2018.00593
10.1007/s11242-018-1039-9
10.1016/j.jenvman.2015.12.012
10.1016/j.gsf.2014.10.002
10.3390/s17112443
10.1162/neco.1997.9.8.1735
10.3390/s20051425
10.1016/j.undsp.2020.01.003
10.5402/2012/678329
10.1007/s00603-018-1513-2
10.1109/ACCESS.2019.2912200
10.1109/ACCESS.2020.2977880
10.1109/ACCESS.2020.2981561
10.2118/191906-MS
10.1177/0954408916659310
10.1155/2012/235929
10.1016/S1452-3981(23)18189-2
10.1061/(ASCE)CF.1943-5509.0000947
10.1016/j.gsf.2020.03.003
10.4043/28015-MS
10.1007/s00024-019-02152-0
10.1016/j.tust.2019.103156
10.1016/S1452-3981(23)15063-2
10.1016/j.tust.2017.07.013
10.1016/j.procs.2016.07.144
10.1016/j.cageo.2020.104527
10.1561/2200000006
10.1109/LGRS.2019.2918641
10.1016/j.gsf.2015.07.003
10.1109/CVPR.2018.00233
10.1109/LGRS.2018.2889307
10.1109/CVPR.2018.00963
10.1103/PhysRevE.96.043309
10.1016/j.neucom.2017.06.023
10.1007/s10489-014-0576-3
10.1007/s00366-015-0400-7
10.1109/ACCESS.2018.2870203
10.1016/j.tust.2018.11.046
10.3390/w10101389
10.1016/j.ins.2018.07.049
10.1109/CVPR.2017.19
10.1109/DICTA.2016.7797053
10.3390/su9060979
10.3390/rs12050752
10.1109/ACCESS.2019.2912419
10.21437/Interspeech.2010-343
10.1080/01431161.2019.1672904
10.1007/s00521-011-0734-z
10.1016/j.ijrmms.2019.104084
10.1109/ACCESS.2019.2962496
10.1016/j.enggeo.2018.09.018
10.1016/j.autcon.2018.11.013
10.1016/j.cageo.2019.104314
10.1007/s11242-014-0313-8
10.3934/dcdss.2019045
10.1162/neco.1989.1.2.270
10.1007/s10346-018-01127-x
10.1145/3065386
10.1109/ACCESS.2020.2995592
10.1007/s00521-017-2990-z
10.1016/j.petrol.2018.11.023
10.1007/s10462-018-09679-z
10.3390/s19183914
10.1117/12.2266226
10.1162/neco.2006.18.7.1527
10.1109/IGARSS.2017.8127091
10.1016/j.eswa.2017.04.053
10.1016/j.tust.2018.07.006
10.1111/mice.12313
10.1016/j.neunet.2014.09.003
10.1016/j.cageo.2017.10.013
10.1109/ACCESS.2018.2839754
10.1007/s00521-013-1434-7
10.1016/0031-3203(82)90024-3
10.1007/s10064-020-01730-0
10.1007/s12517-017-3167-x
10.1016/j.media.2017.07.005
10.1061/(ASCE)CF.1943-5509.0001058
10.1080/17499518.2019.1700423
10.1109/72.279181
10.3390/s19132895
10.1007/s10462-019-09744-1
10.1016/0893-6080(89)90020-8
10.5194/nhess-12-2719-2012
10.1016/j.soildyn.2006.12.009
10.1016/j.compgeo.2007.06.006
10.1109/JSTARS.2019.2951725
10.1109/ACCESS.2019.2959820
10.1016/j.cie.2018.02.028
10.1016/j.asoc.2018.05.018
10.1007/s00521-012-1254-1
10.1007/s10346-017-0941-5
10.1109/ACCESS.2019.2931074
10.1061/(ASCE)CP.1943-5487.0000682
10.1109/TNNLS.2018.2876865
10.3390/ma13061397
10.4324/9780203451519
10.1109/LGRS.2019.2913593
10.1109/TII.2019.2902129
10.1016/j.aei.2005.01.004
10.1061/(ASCE)CF.1943-5509.0000958
10.1007/978-94-015-9341-0_15
10.1109/IJCNN.2011.6033589
10.1109/ACCESS.2020.2984515
10.1111/mice.12367
10.1016/j.compgeo.2009.04.003
10.1016/j.gsf.2020.03.007
10.1016/j.soildyn.2013.05.002
10.1061/(ASCE)CP.1943-5487.0000775
10.1007/s00521-012-1334-2
10.1109/ICCV.2017.304
10.1016/S0266-352X(00)00033-1
10.1061/(ASCE)CP.1943-5487.0000700
10.1007/s00521-011-0735-y
10.1007/s10489-018-01396-y
10.3390/rs11020196
10.1016/j.autcon.2019.102928
10.1016/j.catena.2020.104458
10.1016/j.sjbs.2017.11.022
10.1016/S0167-9236(96)00070-X
10.1016/j.cageo.2019.104312
10.1016/j.petrol.2019.106742
10.1109/ICDAR.2003.1227801
10.1016/j.tust.2018.04.007
10.3390/rs9121220
10.1007/s10346-020-01453-z
10.1016/B978-012161964-0/50007-8
10.1016/S0031-3203(01)00178-9
10.1109/ACCESS.2020.2976910
10.1016/j.soildyn.2007.03.007
10.1061/(ASCE)CF.1943-5509.0000557
10.1007/s12205-011-1154-4
10.1139/t95-103
10.1007/s00521-019-04109-9
10.1016/j.tust.2019.103094
10.1109/ACCESS.2020.3022786
10.1155/2020/8685724
10.1016/j.enggeo.2019.105307
10.1016/j.enggeo.2015.01.009
10.1016/j.neucom.2019.12.040
10.1007/978-3-642-05253-8_40
10.1016/S0893-6080(01)00111-3
10.1111/mice.12440
10.1016/j.tust.2018.04.002
10.1016/j.gsf.2019.10.004
10.1007/s11704-019-8208-z
10.1109/CVPR.2016.90
10.1109/ICCV.2015.123
10.1016/j.compgeo.2012.09.016
10.1016/j.enggeo.2013.12.003
10.1016/j.neunet.2012.02.023
10.1109/CVPR.2015.7299170
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
COPYRIGHT 2021 Springer
Copyright Springer Nature B.V. Dec 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Copyright Springer Nature B.V. Dec 2021
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-021-09967-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 1573-7462
EndPage 5673
ExternalDocumentID A718212747
10_1007_s10462_021_09967_1
GrantInformation_xml – fundername: Key Technologies Research and Development Program
  grantid: 2019YFC1509605
  funderid: http://dx.doi.org/10.13039/501100012165
– fundername: Chongqing Construction Science and Technology Plan Project
  grantid: No. 2019-0045
– fundername: Program of Distinguished Young Scholars, Natural Science Foundation of Chongqing, China
  grantid: cstc2020jcyj-jq0087
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c424t-1286e9a6c2839c4780c6d87cfa998bc88de52b8c7a3b051a07f7b964a80502b13
IEDL.DBID BENPR
ISSN 0269-2821
IngestDate Wed Aug 13 07:52:32 EDT 2025
Tue Jun 10 20:08:24 EDT 2025
Tue Jul 01 01:23:25 EDT 2025
Thu Apr 24 23:05:52 EDT 2025
Fri Feb 21 02:47:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep learning
Geotechnical engineering
Big data
Neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-1286e9a6c2839c4780c6d87cfa998bc88de52b8c7a3b051a07f7b964a80502b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2588185346
PQPubID 36790
PageCount 41
ParticipantIDs proquest_journals_2588185346
gale_infotracacademiconefile_A718212747
crossref_primary_10_1007_s10462_021_09967_1
crossref_citationtrail_10_1007_s10462_021_09967_1
springer_journals_10_1007_s10462_021_09967_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2021
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inform20051914353
SongQReal-time tunnel crack analysis system via deep learningIEEE Access201976418664197
FerreiraAGiraldiGConvolutional Neural Network approaches to granite tiles classificationExpert Syst Appl201784111
WangYTengQHeXFengJZhangTCT-image of rock samples super resolution using 3D convolutional neural networkComput Geosci2019133104314
CruzMSantosJMCruzNUsing neural networks and support vector regression to relate marchetti dilatometer test parameters and maximum shear modulusAppl Intell2015421135146
Mahendran S, Ali H, Vidal R (2017) 3d pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 2174–2182
QuZMeiJLiuLZhouD-YCrack detection of concrete pavement with cross-entropy loss function and improved VGG16 network modelIEEE Access202085456454573
Guirado E, Tabik S, Alcaraz-Segura D, Cabello J, Herrera F (2017) Deep-learning convolutional neural networks for scattered shrub detection with google earth imagery. arXiv preprint https://arxiv.org/abs/1706.00917
ShimSKimJChoG-CLeeS-WMultiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structuresIEEE Access20208170939170950
BagińskaMSrokoszPEThe optimal ANN Model for predicting bearing capacity of shallow foundations trained on scarce dataKSCE J Civil Eng2019231130137
Shaheen F, Verma B, Asafuddoula M (2016) Impact of automatic feature extraction in deep learning architecture. In: 2016 International conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–8
MollahasaniAAlaviAHGandomiAHRashedANonlinear neural-based modeling of soil cohesion interceptKSCE J Civ Eng2011155831840
LiCWangYZhangXGaoHYangYWangJDeep belief network for spectral–spatial classification of hyperspectral remote sensor dataSensors2019191204
RanXXueLZhangYLiuZSangXHeJRock classification from field image patches analyzed using a deep convolutional neural networkMathematics201978755
ZhangWGohATCMultivariate adaptive regression splines for analysis of geotechnical engineering systemsComput Geotech2013488295
Sargano AB, Angelov P, Habib Z (2017) A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. applied sciences 7(1):110
LiJLiPGuoDLiXChenZAdvanced prediction of tunnel boring machine performance based on big dataGeosci Front2020121331338
Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5325–5334
ShahinMAJaksaMBMaierHRArtificial neural network applications in geotechnical engineering Australian geomechanics20013614962
Brock A, Donahue J, Simonyan K (2018) Large scale gan training for high fidelity natural image synthesis. arXiv preprint https://arxiv.org/abs/1809.11096
Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2794–2802
RankovićVNovakovićAGrujovićNDivacDMilivojevićNPredicting piezometric water level in dams via artificial neural networksNeural Comput Appl201424511151121
LaryDJAlaviAHGandomiAHWalkerALMachine learning in geosciences and remote sensingGeosci Front201671310
ShresthaAMahmoodAReview of deep learning algorithms and architecturesIEEE Access201975304053065
van NatijneALLindenberghRCBogaardTAMachine learning: new potential for local and regional deep-seated landslide nowcastingSensors20202051425
LiJZhaoFWangXCaoFHanXThe underground explosion point measurement method based on high-precision location of energy focusIEEE Access20208165989166002
KangBChoeJUncertainty quantification of channel reservoirs assisted by cluster analysis and deep convolutional generative adversarial networksJ Petrol Sci Eng2020187106742
BangSParkSKimHKimHEncoder-decoder network for pixel-level road crack detection in black-box imagesComput-Aided Civil Infrastruct Eng2019348713727
NhuV-HEffectiveness assessment of keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical areaCATENA2020188104458
XiePZhouAChaIBThe Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced LandslidesIEEE Access201975430554311
Goodfellow IJ et al. (2014) Generative Adversarial Nets. In: Advances in neural information processing systems pp. 2672–2680
NelsonEJChaoKCNelsonJDOvertonDDLessons Learned from Foundation and Slab Failures on Expansive SoilsJ Perform Construct Facil2017313D4016007
WongBKBodnovichTASelviYNeural network applications in business: A review and analysis of the literature (1988–1995)Decis Support Syst1997194301320
Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv preprint https://arxiv.org/abs/1704.06857
Mabbutt S, Picton P, Shaw P, Black S Review of Artificial Neural Networks (ANN) applied to corrosion monitoring. In: Journal of Physics: Conference Series, IOP Publishing, Vol. 364, No. 1, p. 012114
LinYZhouKLiJApplication of cloud model in rock burst prediction and performance comparison with three machine learnings algorithmsIEEE Access201863095830968
NaghadehiMZThewesMLavasanAAFace stability analysis of mechanized shield tunneling: An objective systems approach to the problemEng Geol2019262105307
Gandomi AH, Alavi AH (2012b) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Computing and Applications 21(1):171–187
Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4401–4410
FukushimaKMiyakeSNeocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in positionPattern Recogn1982156455469
HintonGEOsinderoSTehY-WA fast learning algorithm for deep belief netsNeural Comput20061871527155422244851106.68094
SupreethaBShenoyNNayakPLion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District2020IndiaApplied Computational Intelligence and Soft Computing10.1155/2020/8685724
BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw199452157166
LazarevskaMKnezevicMCvetkovskaMTrombeva-GavriloskaAApplication of artificial neural networks in civil engineeringTehnički vjesnik201421613531359
Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv preprint https://arxiv.org/abs/1611.02200
MosserLDubruleOBluntMJReconstruction of three-dimensional porous media using generative adversarial neural networksPhys Rev E2017964043309
ImamverdiyevYSukhostatLLithological facies classification using deep convolutional neural networkJ Petrol Sci Eng2019174216228
QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill Construction and BuildingMaterials2018159473478
HeMZhangZRenJHuanJLiGChenYLiNDeep convolutional neural network for fast determination of the rock strength parameters using drilling dataInt J Rock Mech Min Sci2019123104084
LuoC-LShaHLingC-LLiJ-YIntelligent Detection for tunnel shotcrete spray using deep Learning and LiDARIEEE Access2020817551766
Mikolov T, Karafiát M, Burget L, Černocký J, Khudanpur S (2010) Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association, pp 1045–1048
NassrAEsmaeili-FalakMKatebiHJavadiAA new approach to modeling the behavior of frozen soilsEng Geol20182468290
Zhang Z, Yang L, Zheng Y (2018c) Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern Recognition, pp 9242–9251
LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachIEEE Trans Intell Transp Syst2014162865873
ZhangWZhangRWangWZhangFGohATCA Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in claysTunn Undergr Space Technol201984461471
DingLFangWLuoHLovePEZhongBOuyangXA deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memoryAutomat construct201886118124
GaoWWuHSiddiquiMKBaigAQStudy of biological networks using graph theorySaudi J biol sci201825612121219
MosserLDubruleOBluntMJStochastic reconstruction of an oolitic limestone by generative adversarial networksTransp Porous Media2018125181103
MoayediHHuatBBMoayediFAsadiAParsaieAEffect of sodium silicate on unconfined compressive strength of soft clay ElectronicJ Geotech Eng201116289295
LeeGTaiY-WKimJELD-net: An efficient deep learning architecture for accurate saliency detectionIEEE Trans Pattern Anal Mach Intell201740715991610
QinXLiuLWangPWangMXinJMicroscopic Parameter extraction and corresponding strength prediction of cemented paste backfill at different curing timesAdv Civ Eng201810.1155/2018/2837571
AdamsMDKanaroglouPSMapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network modelsJ Environ Manage2016168133141
ValsecchiADamasSTubillejaCArechaldeJStochastic reconstruction of 3D porous media from 2D images using generative adversarial networksNeurocomputing2020399227336
ZhangYWangGLiMHanSAutomated classification analysis of geological structures based on images data and deep learning modelAppl Sci-Basel20188122493
JanJCHungSLChiSYChernJCNeural network forecast model in deep excavationJ Comput
J Ninić (9967_CR168) 2017; 63
Y LeCun (9967_CR117) 1998; 86
H Moayedi (9967_CR156) 2020; 32
YM Najjar (9967_CR162) 2007; 34
Y Li (9967_CR128) 2020; 8
L Shi (9967_CR195) 2018; 6
B Yang (9967_CR227) 2019; 16
ATC Goh (9967_CR73) 1995; 32
W Zhang (9967_CR234) 2016; 7
X Qin (9967_CR178) 2018
9967_CR198
A Zhang (9967_CR241) 2018; 32
G Litjens (9967_CR134) 2017; 42
S Shim (9967_CR196) 2020; 8
9967_CR190
M He (9967_CR89) 2019; 123
GE Hinton (9967_CR90) 2006; 18
A Benardos (9967_CR17) 2004; 19
B Gao (9967_CR64) 2020
M Egmont-Petersen (9967_CR49) 2002; 35
E Uncuoglu (9967_CR207) 2008; 48
PJ Lisboa (9967_CR133) 2002; 15
S Zhao (9967_CR255) 2020; 95
Y Lu (9967_CR138) 2017; 267
9967_CR189
ATC Goh (9967_CR72) 2014; 170
MD Adams (9967_CR2) 2016; 168
9967_CR187
P Xie (9967_CR221) 2019; 7
W Gao (9967_CR60) 2018; 25
M Cruz (9967_CR39) 2015; 42
9967_CR180
A Khan (9967_CR109) 2020; 53
W Zhang (9967_CR245) 2019; 84
G Singh (9967_CR199) 2017; 28
A Mollahasani (9967_CR157) 2011; 15
W Zhang (9967_CR252) 2020
R Zhang (9967_CR249) 2020; 12
L Mosser (9967_CR159) 2017; 96
X Qin (9967_CR177) 2018
A Asadi (9967_CR8) 2011; 6
9967_CR18
N Janssens (9967_CR100) 2020; 13
DJ Lary (9967_CR114) 2016; 7
P Saikia (9967_CR184) 2020; 135
9967_CR15
9967_CR14
Y Erzin (9967_CR51) 2007; 44
L Mosser (9967_CR160) 2018; 125
Y Bengio (9967_CR19) 1994; 5
9967_CR172
9967_CR171
RJ Williams (9967_CR217) 1989; 1
9967_CR170
Y Wu (9967_CR219) 2019; 93
Y Lv (9967_CR141) 2014; 16
A Chakraborty (9967_CR27) 2017; 10
C Cao (9967_CR26) 2018; 77
SJ Lee (9967_CR120) 2003; 30
M Ayyıldız (9967_CR9) 2017; 231
P Jiao (9967_CR101) 2020; 11
A Valsecchi (9967_CR209) 2020; 399
Y Zhang (9967_CR242) 2018; 8
W Zhang (9967_CR239) 2017; 64
A Da'u (9967_CR42) 2020; 53
Y Zhou (9967_CR257) 2017; 31
C Qi (9967_CR175) 2018; 118
MA Shahin (9967_CR192) 2016; 7
C Zhou (9967_CR258) 2019; 9
H Lu (9967_CR139) 2020; 12
9967_CR35
M Mosallanezhad (9967_CR158) 2017; 10
A Calabrese (9967_CR23) 2013; 52
A Ferreira (9967_CR55) 2017; 84
9967_CR31
Z Wei (9967_CR216) 2019; 176
H Kim (9967_CR111) 2018; 32
Y Zhou (9967_CR259) 2019; 33
Z Qu (9967_CR179) 2020; 8
J Li (9967_CR129) 2020; 8
FP Nejad (9967_CR164) 2009; 36
SB Ikizler (9967_CR97) 2014; 24
H Moayedi (9967_CR154) 2019; 31
M Bagińska (9967_CR11) 2019; 23
Z Chen (9967_CR30) 2018; 18
RP Chen (9967_CR29) 2015; 29
Y Tan (9967_CR205) 2017; 31
9967_CR21
9967_CR24
Q Song (9967_CR200) 2019; 7
G Van Houdt (9967_CR210) 2020; 53
9967_CR28
Z Zhang (9967_CR235) 2014; 25
A Asadi (9967_CR7) 2011; 6
A Garg (9967_CR68) 2014; 103
EJ Nelson (9967_CR165) 2017; 31
W Zhang (9967_CR236) 2015; 188
C Dong (9967_CR45) 2017; 9
P Gentine (9967_CR69) 2018; 45
S Bang (9967_CR13) 2019; 34
9967_CR57
W Zhang (9967_CR233) 2013; 48
X Gao (9967_CR62) 2019; 98
9967_CR53
9967_CR52
YMA Hashash (9967_CR84) 2010; 37
Z-Q Zhao (9967_CR253) 2019; 30
D-M Cui (9967_CR41) 2017; 17
9967_CR58
J Zhao (9967_CR254) 2019; 7
D Shen (9967_CR194) 2017; 19
L Azevedo (9967_CR10) 2020; 24
9967_CR43
S Han (9967_CR83) 2019; 9
9967_CR40
MA Shahin (9967_CR191) 2015; 9
L Xiao (9967_CR220) 2018; 18
Y Tan (9967_CR204) 2017; 31
G Lee (9967_CR121) 2017; 40
Y Zhang (9967_CR238) 2017
C Qi (9967_CR176) 2018; 159
S Xu (9967_CR223) 2018; 111
Y Bengio (9967_CR20) 2007; 19
ATC Goh (9967_CR75) 2018; 77
K Hornik (9967_CR92) 1989; 2
9967_CR77
S Karimpouli (9967_CR105) 2019; 111
9967_CR76
9967_CR79
9967_CR119
T Salimans (9967_CR185) 2016; 29
9967_CR118
W Zhang (9967_CR244) 2019; 11
9967_CR230
AL van Natijne (9967_CR211) 2020; 20
S Du (9967_CR48) 2020; 8
E Elbeltagi (9967_CR50) 2005; 19
E Protopapadakis (9967_CR173) 2019; 49
B Kang (9967_CR102) 2020; 187
H Moayedi (9967_CR153) 2018; 34
M Rahman (9967_CR181) 2001; 28
9967_CR67
W Gao (9967_CR61) 2019; 12
M Lazarevska (9967_CR116) 2014; 21
9967_CR63
O Ghorbanzadeh (9967_CR70) 2019; 11
Y Zhang (9967_CR246) 2019; 19
V-H Nhu (9967_CR167) 2020; 188
9967_CR108
9967_CR107
E Laloy (9967_CR113) 2017; 110
9967_CR226
9967_CR222
W Zhang (9967_CR251) 2020; 12
J-M Kang (9967_CR103) 2019; 17
MA Shahin (9967_CR193) 2001; 36
A Krizhevsky (9967_CR112) 2017; 60
G Cheng (9967_CR34) 2017; 887
CG Chua (9967_CR37) 2005; 20
C-L Luo (9967_CR140) 2020; 8
9967_CR94
9967_CR96
X Yuan (9967_CR231) 2019; 16
C Qi (9967_CR174) 2018; 51
O Ghorbanzadeh (9967_CR71) 2019; 11
J Li (9967_CR127) 2019; 7
9967_CR215
Y Dong (9967_CR46) 2019; 7
C Li (9967_CR126) 2019; 19
9967_CR214
9967_CR212
B Karlik (9967_CR106) 1998; 69
B Supreetha (9967_CR202) 2020
W Gao (9967_CR66) 2020; 8
Y Liu (9967_CR135) 2016; 91
9967_CR80
B Liu (9967_CR137) 2018; 10
DT Bui (9967_CR22) 2020; 188
J-S Chou (9967_CR36) 2016; 68
9967_CR88
9967_CR87
Y Li (9967_CR124) 2012; 12
J Li (9967_CR130) 2020; 12
V Ranković (9967_CR183) 2014; 24
A Salsani (9967_CR186) 2014; 24
BK Wong (9967_CR218) 1997; 19
9967_CR86
A Nassr (9967_CR163) 2018; 246
DA Oliveira (9967_CR169) 2019; 16
Y Zhang (9967_CR237) 2017; 31
9967_CR203
O Kapliński (9967_CR104) 2016; 8
9967_CR201
Y Mao (9967_CR149) 2019; 19
SW Canchumuni (9967_CR25) 2019; 177
JE Ball (9967_CR12) 2017; 11
H Thirugnanam (9967_CR206) 2020; 17
H Chen (9967_CR33) 2020; 101
B Gordan (9967_CR78) 2016; 32
M Baziar (9967_CR16) 2007; 27
X Ran (9967_CR182) 2019; 7
A Asadi (9967_CR6) 2011; 6
T Lei (9967_CR122) 2019; 16
H Moayedi (9967_CR155) 2011; 16
A Shrestha (9967_CR197) 2019; 7
Y Huang (9967_CR95) 2019; 121
S-H Kim (9967_CR110) 2014; 18
Y Lin (9967_CR132) 2018; 6
9967_CR152
S Hochreiter (9967_CR91) 1997; 9
9967_CR151
9967_CR150
JC Jan (9967_CR99) 2002; 16
M-Y Gao (9967_CR65) 2020; 8
L Yz (9967_CR232) 2017; 32
D CireşAn (9967_CR38) 2012; 32
9967_CR148
9967_CR147
9967_CR146
9967_CR145
9967_CR144
9967_CR142
C Zhong (9967_CR256) 2020; 41
X Dong (9967_CR47) 2020; 14
Y Wang (9967_CR213) 2019; 133
C Zhou (9967_CR260) 2019; 105
M Havaei (9967_CR85) 2017; 35
S Lawrence (9967_CR115) 1997; 8
D Xue (9967_CR225) 2018; 111
ATC Goh (9967_CR74) 2017; 70
K Fukushima (9967_CR56) 1982; 15
MZ Naghadehi (9967_CR161) 2019; 262
9967_CR136
G Nguyen (9967_CR166) 2019; 52
P Zhang (9967_CR250) 2020; 106
L Ding (9967_CR44) 2018; 86
W Gao (9967_CR59) 2018; 467
I Ahmad (9967_CR3) 2007; 27
S Han (9967_CR82) 2019; 133
Y Xue (9967_CR224) 2018; 33
M Fatehnia (9967_CR54) 2018; 9
S Han (9967_CR81) 2018; 7
H-w Huang (9967_CR93) 2018; 77
C Ye (9967_CR229) 2019; 12
H Chen (9967_CR32) 2019; 7
R Vaillant (9967_CR208) 1994; 141
J Ma (9967_CR143) 2018; 15
C Liang (9967_CR131) 2018; 10
T-F Zhang (9967_CR247) 2019; 16
D Yang (9967_CR228) 2020; 8
X Li (9967_CR123) 2019; 107
Y Imamverdiyev (9967_CR98) 2019; 174
J Schmidhuber (9967_CR188) 2015; 61
9967_CR248
9967_CR5
9967_CR4
9967_CR125
9967_CR1
9967_CR243
9967_CR240
References_xml – reference: ZhangYDingLLovePEDPlanning of deep foundation construction technical specifications using improved case-based reasoning with weighted k-nearest neighborsJ Comput Civ Eng201731504017029
– reference: ChenHHeXTengQSheriffREFengJXiongSSuper-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networksPhysical Review E20201012023305
– reference: Yang HL, Lunga D, Yuan J (2017) Toward country scale building detection with convolutional neural network using aerial images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 870–873
– reference: GohATCZhangYZhangRZhangWXiaoYEvaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regressionTunn Undergr Space Technol201770148154
– reference: ChenHLinHYaoMImproving the efficiency of encoder-decoder architecture for pixel-level crack detectionIEEE Access20197186657186670
– reference: MaoYZhangJQiHWangLDNN-MVL: DNN-Multi-view-learning-based recover block missing data in a dam safety monitoring systemSensors201919132895
– reference: ChengGGuoWRock images classification by using deep convolution neural networkJ Phys: Conference Series, IOP Publish201788710120893661079
– reference: GordanBArmaghaniDJHajihassaniMMonjeziMPrediction of seismic slope stability through combination of particle swarm optimization and neural networkEng Comput20163218597
– reference: ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inform20051914353
– reference: KhanASohailAZahooraUQureshiASA survey of the recent architectures of deep convolutional neural networksArtif Intell Rev202053854555516
– reference: KimS-HYangJJeongJ-HPrediction of subgrade resilient modulus using artificial neural networkKSCE J Civ Eng201418513721379
– reference: ZhangZLiuZZhengLZhangYDevelopment of an adaptive relevance vector machine approach for slope stability inferenceNeural Comput Appl20142520252035
– reference: DingLFangWLuoHLovePEZhongBOuyangXA deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memoryAutomat construct201886118124
– reference: LazarevskaMKnezevicMCvetkovskaMTrombeva-GavriloskaAApplication of artificial neural networks in civil engineeringTehnički vjesnik201421613531359
– reference: VaillantRMonrocqCLe CunYOriginal approach for the localisation of objects in imagesIEE Proc Vis Image Signal Process19941414245250
– reference: YangBYinKLacasseSLiuZTime series analysis and long short-term memory neural network to predict landslide displacementLandslides2019164677694
– reference: ZhouCXuHDingLWeiLZhouYDynamic prediction for attitude and position in shield tunneling: a deep learning methodAutom Construct2019105102840
– reference: QiCFourieAA real-time back-analysis technique to infer rheological parameters from field monitoringRock Mech Rock Eng2018511030293043
– reference: ZhangWWuCZhongHLiYWangLPrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimizationGeosci Front2020121469477
– reference: Gao W, Dimitrov D, Abdo H (2019a) Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems-Series S 12
– reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein gan. arXiv preprint https://arxiv.org/abs/1701.07875
– reference: CireşAnDMeierUMasciJSchmidhuberJMulti-column deep neural network for traffic sign classificationNeural networks201232333338
– reference: GhorbanzadehOBlaschkeTGholamniaKMeenaSRTiedeDAryalJEvaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detectionRemote Sens2019112196
– reference: Huang L, Li J, Hao H, Li X (2018b) Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning Tunnelling and Underground Space Technology 81:265–276
– reference: ZhangWZhangRWuCGohATCLacasseSLiuZLiuHState-of-the-art review of soft computing applications in underground excavationsGeosci Front201911410951106
– reference: CuiD-MYanWWangX-QLuL-MTowards intelligent interpretation of low strain pile integrity testing results using machine learning techniquesSensors201717112443
– reference: MollahasaniAAlaviAHGandomiAHRashedANonlinear neural-based modeling of soil cohesion interceptKSCE J Civ Eng2011155831840
– reference: LuHMaLFuXLiuCWangZTangMLiNLandslides information extraction using object-oriented image analysis paradigm based on deep learning and transfer learningRemote Sens2020125752
– reference: LinYZhouKLiJApplication of cloud model in rock burst prediction and performance comparison with three machine learnings algorithmsIEEE Access201863095830968
– reference: QinXLiuLWangPWangMXinJMicroscopic Parameter extraction and corresponding strength prediction of cemented paste backfill at different curing timesAdv Civ Eng201810.1155/2018/2837571
– reference: Sermanet P, LeCun Y (2011) Traffic sign recognition with multi-scale convolutional networks. In: The 2011 International Joint Conference on Neural Networks. IEEE, pp 2809–2813
– reference: LuYYiSZengNLiuYZhangYIdentification of rice diseases using deep convolutional neural networksNeurocomputing2017267378384
– reference: Canchumuni SA, Emerick AA, Pacheco MA (2017) Integration of ensemble data assimilation and deep learning for history matching facies models. In: OTC Brasil. Offshore Technology Conference
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE1998861122782324
– reference: ShiLJianpingCJieXProspecting information extraction by text mining based on convolutional neural networks–a case study of the Lala copper deposit, ChinaIEEE Access201865228652297
– reference: XiePZhouAChaIBThe Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced LandslidesIEEE Access201975430554311
– reference: ZhongCLandslide mapping with remote sensing: challenges and opportunitiesInt J Remote Sens202041415551581
– reference: SalsaniADaneshianJShariatiSYazdani-ChamziniATaheriMPredicting roadheader performance by using artificial neural networkNeural Comput Appl20142418231831
– reference: BallJEAndersonDTChanCSComprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the communityJ Appl Remote Sens2017114042609
– reference: Zhang Z, Yang L, Zheng Y (2018c) Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern Recognition, pp 9242–9251
– reference: LeeSJLeeSRKimYSAn approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulationComput Geotech2003306489503
– reference: NejadFPJaksaMBKakhiMMcCabeBAPrediction of pile settlement using artificial neural networks based on standard penetration test dataComput Geotech200936711251133
– reference: Gandomi AH, Alavi AH (2012a) A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Computing and Applications 21(1):189–201
– reference: Zhang P, Sun J, Jiang Y, Gao J (2017a) Deep learning method for lithology identification from borehole images. In: 79th EAGE Conference and Exhibition 2017, European Association of Geoscientists & Engineers, Vol. 2017, No. 1, pp. 1–5
– reference: Marzouk A, Barros P, Eppe M, Wermter S (2019) The Conditional Boundary Equilibrium Generative Adversarial Network and its Application to Facial Attributes. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, pp 1–7
– reference: CalabreseALaiCGFragility functions of blockwork wharves using artificial neural networksSoil Dynam Earthquake Eng20135288102
– reference: Srisutthiyakorn* N (2016) Deep-learning methods for predicting permeability from 2D/3D binary-segmented images. In: SEG technical program expanded abstracts 2016. Society of Exploration Geophysicists, pp 3042–3046
– reference: Fan Y, Qian Y, Xie F-L, Soong FK TTS (2014) synthesis with bidirectional LSTM based recurrent neural networks. In: Fifteenth Annual Conference of the International Speech Communication Association
– reference: Ledig C et al. (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690
– reference: MosserLDubruleOBluntMJStochastic reconstruction of an oolitic limestone by generative adversarial networksTransp Porous Media2018125181103
– reference: KarimpouliSTahmasebiPImage-based velocity estimation of rock using Convolutional Neural NetworksNeural Netw20191118997
– reference: Brock A, Donahue J, Simonyan K (2018) Large scale gan training for high fidelity natural image synthesis. arXiv preprint https://arxiv.org/abs/1809.11096
– reference: UncuogluELamanMSaglamerAKaraHBPrediction of lateral effective stresses in sand using artificial neural networkSoils Found2008482141153
– reference: LeeGTaiY-WKimJELD-net: An efficient deep learning architecture for accurate saliency detectionIEEE Trans Pattern Anal Mach Intell201740715991610
– reference: ZhangWZhangRWangWZhangFGohATCA Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in claysTunn Undergr Space Technol201984461471
– reference: ChakrabortyAGoswamiDPrediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN)Arab J Geosci20171017385
– reference: ZhangWGohATCMultivariate adaptive regression splines for analysis of geotechnical engineering systemsComput Geotech2013488295
– reference: MoayediHHuatBBMoayediFAsadiAParsaieAEffect of sodium silicate on unconfined compressive strength of soft clay ElectronicJ Geotech Eng201116289295
– reference: Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8789–8797
– reference: ErzinYArtificial neural networks approach for swell pressure versus soil suction behaviourCan Geotech J2007441012151223
– reference: LuoC-LShaHLingC-LLiJ-YIntelligent Detection for tunnel shotcrete spray using deep Learning and LiDARIEEE Access2020817551766
– reference: ThirugnanamHRameshMVRanganVPEnhancing the reliability of landslide early warning systems by machine learningLandslides202017922312246
– reference: ValsecchiADamasSTubillejaCArechaldeJStochastic reconstruction of 3D porous media from 2D images using generative adversarial networksNeurocomputing2020399227336
– reference: SchmidhuberJDeep learning in neural networks: An overviewNeural networks20156185117
– reference: Abdolahnejad M, Liu PX (2020) Deep learning for face image synthesis and semantic manipulations: a review and future perspectives. Artificial Intelligence Review, 1–34
– reference: Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv preprint https://arxiv.org/abs/1611.02200
– reference: ZhangWLiHWuCLiYLiuZLiuHSoft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling Underground SpaceUnderground Space202010.1016/j.undsp.2019.12.003
– reference: CruzMSantosJMCruzNUsing neural networks and support vector regression to relate marchetti dilatometer test parameters and maximum shear modulusAppl Intell2015421135146
– reference: AdamsMDKanaroglouPSMapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network modelsJ Environ Manage2016168133141
– reference: SinghGWaliaBPerformance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networksNeural Comput Appl2017281289298
– reference: AyyıldızMÇetinkayaKPredictive modeling of geometric shapes of different objects using image processing and an artificial neural networkProc Inst Mech Eng, Part E: J Proc Mech Eng2017231612061216
– reference: GaoWLuXPengYWuLA Deep learning approach replacing the finite difference method for in situ stress predictionIEEE Access202084406344074
– reference: MaJTangHLiuXWenTZhangJTanQFanZProbabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir areaChina Landslides201815611451153
– reference: BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw199452157166
– reference: BengioYLamblinPPopoviciDLarochelleHGreedy layer-wise training of deep networksAdv Neural Inf Process Syst200719153160
– reference: Goodfellow IJ et al. (2014) Generative Adversarial Nets. In: Advances in neural information processing systems pp. 2672–2680
– reference: DongCDongXGehmanJLefsrudLUsing BP neural networks to prioritize risk management approaches for China’s unconventional shale gas industrySustainability201796979
– reference: Shaheen F, Verma B, Asafuddoula M (2016) Impact of automatic feature extraction in deep learning architecture. In: 2016 International conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–8
– reference: MoayediHMosallanezhadMRashidASAJusohWAWMuazuMAA systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applicationsNeural Comput Appl202032495518
– reference: HeMZhangZRenJHuanJLiGChenYLiNDeep convolutional neural network for fast determination of the rock strength parameters using drilling dataInt J Rock Mech Min Sci2019123104084
– reference: Mahendran S, Ali H, Vidal R (2017) 3d pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 2174–2182
– reference: Chen Y, Lai Y-K, Liu Y-J (2018a) Cartoongan: Generative adversarial networks for photo cartoonization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9465–9474
– reference: YangDGuCZhuYDaiBZhangKZhangZLiBA Concrete Dam Deformation Prediction Method Based on LSTM With Attention MechanismIEEE Access20208185177185186
– reference: Gandomi AH, Alavi AH (2012b) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Computing and Applications 21(1):171–187
– reference: JanJCHungSLChiSYChernJCNeural network forecast model in deep excavationJ Comput Civil Eng20021615965
– reference: NassrAEsmaeili-FalakMKatebiHJavadiAA new approach to modeling the behavior of frozen soilsEng Geol20182468290
– reference: ZhangYLiMHanSRenQShiJIntelligent identification for rock-mineral microscopic images using ensemble machine learning algorithmsSensors201919183914
– reference: Phoon K-K (2020) The story of statistics in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 14(1):3–25
– reference: WilliamsRJZipserDA learning algorithm for continually running fully recurrent neural networksNeural Comput198912270280
– reference: MoayediHRezaeiAAn artificial neural network approach for under-reamed piles subjected to uplift forces in dry sandNeural Comput Appl2019312327336
– reference: CaoCShiCLeiMYangWLiuJSqueezing failure of tunnels: A case studyTunn Undergr Space Technol201877188203
– reference: Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4401–4410
– reference: MosserLDubruleOBluntMJReconstruction of three-dimensional porous media using generative adversarial neural networksPhys Rev E2017964043309
– reference: OliveiraDAFerreiraRSSilvaRBrazilEVImproving seismic data resolution with deep generative networksIEEE Geosci Remote Sens Lett2019161219291933
– reference: GaoWGuiraoJLGAbdel-AtyMXiWAn independent set degree condition for fractional critical deleted graphsDis Continus Dynam Syst-S2019124&587739854121418.05101
– reference: LiYChenGTangCZhouGZhengLRainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural NetworkNat Hazards Earth Syst Sci201212827192729
– reference: ZhaoZ-QZhengPXuS-tWuXObject detection with deep learning: a reviewIEEE Trans neural Netw Learn Syst2019301132123232
– reference: XueDWangJZhaoYZhouHQuantitative determination of mining-induced discontinuous stress drop in coalInt J Rock Mech Min Sci2018111111
– reference: Watson J, Wan F, Sibbald A (1995) The use of artificial neural networks in pile integrity testing. CIVIL-COMP95 developments in neural networks and evolutionary computing for civil and structural engineering:7–13
– reference: Egmont-PetersenMde RidderDHandelsHImage processing with neural networks—a reviewPattern Recogn20023510227923011006.68884
– reference: ZhangWZhangYGohATCMultivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavationTunn Undergr Space Technol2017642433
– reference: Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning vol. 1, No. 2. MIT press Cambridge
– reference: LiangCLiHLeiMDuQDongting lake water level forecast and its relationship with the three gorges dam based on a long short-term memory networkWater201810101389
– reference: LiJChenHZhouTLiXTailings Pond Risk Prediction Using Long Short-Term Memory NetworksIEEE Access20197182527182537
– reference: He Y-y, Li B-q, Guo Y-s, Wang T-n, Zhu Y (2017) An interpretation model of GPR point data in tunnel geological prediction. In: Eighth International Conference on Graphic and Image Processing (ICGIP 2016). International Society for Optics and Photonics
– reference: ZhangPWuH-NChenR-PDaiTMengF-YWangH-BA critical evaluation of machine learning and deep learning in shield-ground interaction predictionTunn Undergr Space Technol2020106103593
– reference: QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill Construction and BuildingMaterials2018159473478
– reference: Wang L, Wu C, Gu X, Liu H, Mei G, Zhang W (2020) Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bulletin of Engineering Geology and the Environment:1–13. https://doi.org/10.1007/s10064-020-01730-0
– reference: Fang Z, Wang Y, Peng L, Hong H (2020) Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences:104470
– reference: GargAGargATaiKBarontiniSStokesAA computational intelligence-based genetic programming approach for the simulation of soil water retention curvesTransp Porous Media20141033497513
– reference: Lee C, Sterling R (1992) Identifying probable failure modes for underground openings using a neural network. In: International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 29, No. 1, pp. 49–67)
– reference: NguyenGMachine Learning and Deep Learning frameworks and libraries for large-scale data mining: a surveyArtif Intell Rev201952177124
– reference: LisboaPJA review of evidence of health benefit from artificial neural networks in medical interventionNeural netw20021511139
– reference: QiCTangXSlope stability prediction using integrated metaheuristic and machine learning approaches: a comparative studyComput Ind Eng2018118112122
– reference: van NatijneALLindenberghRCBogaardTAMachine learning: new potential for local and regional deep-seated landslide nowcastingSensors20202051425
– reference: FatehniaMAmiriniaGA review of genetic programming and artificial neural network applications in pile foundationsInt J Geo-Eng2018912
– reference: Sargano AB, Angelov P, Habib Z (2017) A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. applied sciences 7(1):110
– reference: FerreiraAGiraldiGConvolutional Neural Network approaches to granite tiles classificationExpert Syst Appl201784111
– reference: GaoM-YZhangNShenS-LZhouAReal-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GA optimizationIEEE Access202086431064323
– reference: BuiDTTsangaratosPNguyenV-TVan LiemNTrinhPTComparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessmentCATENA2020188104426
– reference: GaoBWangRLinCGuoXLiuBZhangWTBM penetration rate prediction based on the long short-term memory neural networkUnderground Space202010.1016/j.undsp.2020.01.003
– reference: Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint https://arxiv.org/abs/1510.02855
– reference: ChouJ-SThedjaJPPMetaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problemsAutomat Construct2016686580
– reference: GaoXShiMSongXZhangCZhangHRecurrent neural networks for real-time prediction of TBM operating parametersAutomation in Construction201998225235
– reference: Alqahtani N, Armstrong RT, Mostaghimi P (2018) Deep learning convolutional neural networks to predict porous media properties. In: SPE Asia Pacific oil and gas conference and exhibition. Society of Petroleum Engineers
– reference: BaziarMJafarianYAssessment of liquefaction triggering using strain energy concept and ANN model: capacity energySoil Dynam Earthquake Eng2007271210561072
– reference: NajjarYMHuangCSimulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approachComput Geotech2007345346361
– reference: Da'uASalimNRecommendation system based on deep learning methods: a systematic review and new directionsArtif Intell Rev20205327092748
– reference: HintonGEOsinderoSTehY-WA fast learning algorithm for deep belief netsNeural Comput20061871527155422244851106.68094
– reference: ShimSKimJChoG-CLeeS-WMultiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structuresIEEE Access20208170939170950
– reference: Bengio Y (2009) Learning deep architectures for AI. Foundations and trends® in Machine Learning 2(1):1–127
– reference: GohATCZhangWZhangYXiaoYXiangYDetermination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approachBull Eng Geol Env2018772489500
– reference: Chen J, Jin Q, Chao J (2012) Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin. Mathematical Problems in Engineering 2012
– reference: WongBKBodnovichTASelviYNeural network applications in business: A review and analysis of the literature (1988–1995)Decis Support Syst1997194301320
– reference: HanSRenFWuCChenYDuQYeXUsing the tensorflow deep neural network to classify mainland china visitor behaviours in hong kong from check-in dataISPRS Int J Geo-Inf201874158
– reference: NelsonEJChaoKCNelsonJDOvertonDDLessons Learned from Foundation and Slab Failures on Expansive SoilsJ Perform Construct Facil2017313D4016007
– reference: XiaoLZhangYPengGLandslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highwaySensors201818124436
– reference: YzLNieZhHwMaStructural damage detection with automatic feature-extraction through deep learningComput-Aided Civ Infrastruct Eng2017321210251046
– reference: Peng G, Wang S (2018) Weakly supervised facial action unit recognition through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2188–2196
– reference: GhorbanzadehOMeenaSRBlaschkeTAryalJUAV-based slope failure detection using deep-learning convolutional neural networksRemote Sens201911172046
– reference: GaoWWuHSiddiquiMKBaigAQStudy of biological networks using graph theorySaudi J biol sci201825612121219
– reference: AzevedoLPaneiroGSantosASoaresAGenerative adversarial network as a stochastic subsurface model reconstructionComput Geosci2020244167316924126436
– reference: DuSWangRWeiCWangYZhouYWangJSongHThe connectivity evaluation among wells in reservoir utilizing machine learning methods IEEEAccess202084720947219
– reference: RanXXueLZhangYLiuZSangXHeJRock classification from field image patches analyzed using a deep convolutional neural networkMathematics201978755
– reference: Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint https://arxiv.org/abs/1411.1784
– reference: AsadiAMoayediHHuatBBParsaieATahaMRArtificial neural networks approach for electrochemical resistivity of highly organic soilInt J Electrochem Sci20116411351145
– reference: NinićJFreitagSMeschkeGA hybrid finite element and surrogate modelling approach for simulation and monitoring supported TBM steeringTunn Undergr Space Technol2017631228
– reference: ShresthaAMahmoodAReview of deep learning algorithms and architecturesIEEE Access201975304053065
– reference: AsadiAMoayediHHuatBBBoroujeniFZParsaieASojoudiSPrediction of zeta potential for tropical peat in the presence of different cations using artificial neural networksInt J Electrochem Sci20116411461158
– reference: Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv preprint https://arxiv.org/abs/1704.06857
– reference: KangBChoeJUncertainty quantification of channel reservoirs assisted by cluster analysis and deep convolutional generative adversarial networksJ Petrol Sci Eng2020187106742
– reference: Barrow H (1996) Connectionism and neural networks. In: Artificial Intelligence, pp 135–155, Academic Press
– reference: ZhangADeep Learning-Based Fully Automated Pavement Crack Detection on 3D Asphalt Surfaces with an Improved CrackNetJ Comput Civ Eng201832504018041
– reference: JiaoPAlaviAHArtificial intelligence in seismology: advent, performance and future trendsGeosci Front2020113739744
– reference: Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint https://arxiv.org/abs/1710.10196
– reference: Lv Z, Liu T, Kong X, Shi C, Benediktsson JA (2020) Landslide Inventory Mapping with Bitemporal Aerial Remote Sensing Images Based on the Dual-path Full Convolutional Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– reference: RankovićVNovakovićAGrujovićNDivacDMilivojevićNPredicting piezometric water level in dams via artificial neural networksNeural Comput Appl201424511151121
– reference: HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural netw1989253593661383.92015
– reference: LiYBaoTGongJShuXZhangKThe prediction of dam displacement time series using STL, extra-trees, and stacked LSTM Neural networkIEEE Access202089444094452
– reference: ProtopapadakisEVoulodimosADoulamisADoulamisNStathakiTAutomatic crack detection for tunnel inspection using deep learning and heuristic image post-processingAppl Intell201949727932806
– reference: ShahinMAState-of-the-art review of some artificial intelligence applications in pile foundationsGeosci Front2016713344
– reference: Mabbutt S, Picton P, Shaw P, Black S Review of Artificial Neural Networks (ANN) applied to corrosion monitoring. In: Journal of Physics: Conference Series, IOP Publishing, Vol. 364, No. 1, p. 012114
– reference: MosallanezhadMMoayediHDeveloping hybrid artificial neural network model for predicting uplift resistance of screw pilesArab J Geosci20171022479
– reference: KarlikBanÖzkayaAydinPakdemirliESMVibrations of a beam-mass systems using artificial neural networksComput Struct19986933393470967.74531
– reference: DongYWangJWangZZhangXGaoYSuiQJiangPA Deep-learning-based multiple defect detection method for tunnel lining damagesIEEE Access20197182643182657
– reference: LaryDJAlaviAHGandomiAHWalkerALMachine learning in geosciences and remote sensingGeosci Front201671310
– reference: YuanXLiLWangYNonlinear dynamic soft sensor modeling with supervised long short-term memory networkIEEE Trans Industr Inf201916531683176
– reference: Huang Y, Zhang H, Li H, Wu S (2020) Recovering compressed images for automatic crack segmentation using generative models. arXiv preprint https://arxiv.org/abs/2003.03028
– reference: Gurney K (1997) An introduction to neural networks. CRC press
– reference: LaloyEHéraultRLeeJJacquesDLindeNInversion using a new low-dimensional representation of complex binary geological media based on a deep neural networkAdv Water Resour2017110387405
– reference: ZhangT-FTilkePDupontEZhuL-CLiangLBaileyWGenerating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networksPetroleum Science2019163541549
– reference: LiXGongGPredictive control of slurry pressure balance in shield tunneling using diagonal recurrent neural network and evolved particle swarm optimizationAutom Construct2019107102928
– reference: SaikiaPBaruahRDSinghSKChaudhuriPKArtificial Neural Networks in the domain of reservoir characterization: a review from shallow to deep modelsComput Geosci2020135104357
– reference: SupreethaBShenoyNNayakPLion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District2020IndiaApplied Computational Intelligence and Soft Computing10.1155/2020/8685724
– reference: ImamverdiyevYSukhostatLLithological facies classification using deep convolutional neural networkJ Petrol Sci Eng2019174216228
– reference: Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5325–5334
– reference: QuZMeiJLiuLZhouD-YCrack detection of concrete pavement with cross-entropy loss function and improved VGG16 network modelIEEE Access202085456454573
– reference: DongXYuZCaoWShiYMaQA survey on ensemble learningFront Comput Sci202014241258
– reference: XueYLiYA fast detection method via region-based fully convolutional neural networks for shield tunnel lining defectsComput-Aided Civ Infrastruct Eng2018338638654
– reference: Zhang W, Wu C, Li Y, Wang L, Samui P (2019b) Assessment of pile drivability using random forest regression and multivariate adaptive regression splines. Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards:1–14. https://doi.org/10.1080/17499518.2019.1674340
– reference: ShahinMAJaksaMBMaierHRArtificial neural network applications in geotechnical engineering Australian geomechanics20013614962
– reference: ZhangYChanWJaitlyNVery deep convolutional networks for end-to-end speech recognition2017 IEEE International Conference on Acoustics2017IEEESpeech and Signal Processing (ICASSP)48454849
– reference: YeCLandslide Detection of Hyperspectral Remote Sensing Data Based on Deep Learning With ConstrainsIEEE J Select Topics Appl Earth Observat Remote Sens2019121250475060
– reference: He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
– reference: LiCWangYZhangXGaoHYangYWangJDeep belief network for spectral–spatial classification of hyperspectral remote sensor dataSensors2019191204
– reference: Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2794–2802
– reference: CanchumuniSWEmerickAAPachecoMACHistory matching geological facies models based on ensemble smoother and deep generative modelsJ Petrol Sci Eng2019177941958
– reference: Liu X, Cheng G, Wang B, Lin S (2012) Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Engineering 2012
– reference: WuYHaoYTaoJTengYDongXNon-destructive testing on anchorage quality of hollow grouted rock bolt for application in tunneling, lessons learned from their uses in coal minesTunn Undergr Space Technol201993103094
– reference: ZhouYSuWDingLLuoHLovePEDPredicting safety risks in deep foundation pits in subway infrastructure projects: support vector machine approachJ Comput Civ Eng201731504017052
– reference: LitjensGA survey on deep learning in medical image analysisMed Image Anal2017426088
– reference: MoayediHArmaghaniDJOptimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soilEng Comput2018342347356
– reference: ChuaCGGohATCEstimating wall deflections in deep excavations using Bayesian neural networksTunn Undergr Space Technol2005204400409
– reference: Xing Y, Yue J, Chen C, Qin Y, Hu J (2020) A hybrid prediction model of landslide displacement with risk-averse adaptation. Computers & Geosciences:104527
– reference: ZhangRWuCGohATCBöhlkeTZhangWEstimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learningGeosci Front2020121365373
– reference: LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachIEEE Trans Intell Transp Syst2014162865873
– reference: ZhangYWangGLiMHanSAutomated classification analysis of geological structures based on images data and deep learning modelAppl Sci-Basel20188122493
– reference: Yu H, Ma Y, Wang L, Zhai Y, Wang X (2017) A landslide intelligent detection method based on CNN and RSG_R. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, pp 40–44
– reference: GaoWGuiraoJLBasavanagoudBWuJPartial multi-dividing ontology learning algorithmInf Sci2018467355838515501441.68244
– reference: LawrenceSGilesCLTsoiACBackADFace recognition: A convolutional neural-network approachIEEE Trans Neural Netw19978198113
– reference: AhmadIEl NaggarMHKhanANArtificial neural network application to estimate kinematic soil pile interaction response parametersSoil Dynam Earthquake Eng2007279892905
– reference: TanYLuYForensic diagnosis of a leaking accident during excavationJ Perform Construct Facil201731504017061
– reference: ZhouYLiSZhouCLuoHIntelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stationsJ Comput Civ Eng201933105018004
– reference: LiuBZhangYHeDLiYIdentification of apple leaf diseases based on deep convolutional neural networksSymmetry201810111
– reference: LiuYWuLGeological disaster recognition on optical remote sensing images using deep learningProcedia Comput Sci201691566575
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
– reference: ZhaoSZhangDMHuangHWDeep learning–based image instance segmentation for moisture marks of shield tunnel liningTunn Undergr Space Technol202095103156
– reference: FukushimaKMiyakeSNeocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in positionPattern Recogn1982156455469
– reference: Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint https://arxiv.org/abs/1511.06434
– reference: Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Icdar Vol. 3, No. 2003
– reference: ZhangWGohATCMultivariate adaptive regression splines and neural network models for prediction of pile drivabilityGeosci Front2016714552
– reference: ShenDWuGSukH-IDeep learning in medical image analysisAnnu Rev Biomed Eng201719221248
– reference: HuangH-wLiQ-tZhangD-mDeep learning based image recognition for crack and leakage defects of metro shield tunnelTunn Undergr Space Technol201877166176
– reference: WeiZHuHZhouH-wLauACharacterizing rock facies using machine learning algorithm based on a convolutional neural network and data padding strategyPure Appl Geophys2019176835933605
– reference: LeiTZhangYLvZLiSLiuSNandiAKLandslide inventory mapping from bitemporal images using deep convolutional neural networksIEEE Geosci Remote Sens Lett2019166982986
– reference: ChenRPLiZCChenYMOuCYHuQRaoMFailure Investigation at a Collapsed Deep Excavation in Very Sensitive Organic Soft ClayJ Perform Constr Facil201529304014078
– reference: LiJZhaoFWangXCaoFHanXThe underground explosion point measurement method based on high-precision location of energy focusIEEE Access20208165989166002
– reference: ShahinMAA review of artificial intelligence applications in shallow foundationsInt J Geotech Eng2015914960
– reference: Ding A, Zhang Q, Zhou X, Dai B (2016) Automatic recognition of landslide based on CNN and texture change detection. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp 444–448
– reference: RahmanMWangJDengWCarterJA neural network model for the uplift capacity of suction caissonsComput Geotech2001284269287
– reference: XuSNiuRDisplacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, ChinaComput Geosci20181118796
– reference: BagińskaMSrokoszPEThe optimal ANN Model for predicting bearing capacity of shallow foundations trained on scarce dataKSCE J Civil Eng2019231130137
– reference: WangYTengQHeXFengJZhangTCT-image of rock samples super resolution using 3D convolutional neural networkComput Geosci2019133104314
– reference: GohATCWongKBromsBEstimation of lateral wall movements in braced excavations using neural networksCan Geotech J199532610591064
– reference: BenardosAKaliampakosDModelling TBM performance with artificial neural networksTunn Undergr Space Technol2004196597605
– reference: ZhouCOuyangJMingWZhangGDuZLiuZA stratigraphic prediction method based on machine learningAppl Sci-Basel20199173553
– reference: JanssensNHuysmansMSwennenRComputed tomography 3D super-resolution with generative Adversarial neural networks: implications on unsaturated and two-phase fluid flowMaterials20201361397
– reference: KimHKimHHongYWByunHDetecting construction equipment using a region-based fully convolutional network and transfer learningJ Comp Civil Eng201832204017082
– reference: HanSLiHLiMRoseTA Deep Learning Based Method for the Non-Destructive Measuring of Rock Strength through Hammering SoundAppl Sci-Basel20199173484
– reference: GentinePPritchardMRaspSReinaudiGYacalisGCould machine learning break the convection parameterization deadlock?Geophys Res Lett2018451157425751
– reference: ZhaoJShiMHuGSongXZhangCTaoDWuWA data-driven framework for tunnel geological-type prediction based on TBM operating dataIEEE Access201976670366713
– reference: SalimansTGoodfellowIZarembaWCheungVRadfordAChenXImproved techniques for training gansAdv Neural Inf Process Syst20162922342242
– reference: ChenZZhangYOuyangCZhangFMaJAutomated landslides detection for mountain cities using multi-temporal remote sensing imagerySensors2018183821
– reference: AsadiAShariatmadariNMoayediHHuatBBEffect of MSW leachate on soil consistency under influence of electrochemical forces induced by soil particlesInt J Electrochem Sci20116723442351
– reference: Mikolov T, Karafiát M, Burget L, Černocký J, Khudanpur S (2010) Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association, pp 1045–1048
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput19979817351780
– reference: Guirado E, Tabik S, Alcaraz-Segura D, Cabello J, Herrera F (2017) Deep-learning convolutional neural networks for scattered shrub detection with google earth imagery. arXiv preprint https://arxiv.org/abs/1706.00917
– reference: HashashYMALevasseurSOsouliAFinnoRMalecotYComparison of two inverse analysis techniques for learning deep excavation responseComput Geotech2010373323333
– reference: HavaeiMBrain tumor segmentation with deep neural networksMed Image Anal2017351831
– reference: SongQReal-time tunnel crack analysis system via deep learningIEEE Access201976418664197
– reference: Bao J, Chen D, Wen F, Li H, Hua G (2018) Towards open-set identity preserving face synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 6713–6722
– reference: KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksCommun ACM20176068490
– reference: NaghadehiMZThewesMLavasanAAFace stability analysis of mechanized shield tunneling: An objective systems approach to the problemEng Geol2019262105307
– reference: GohATCZhangWAn improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splinesEng Geol2014170110
– reference: TanYLuYWhy Excavation of a Small Air Shaft Caused Excessively Large Displacements: Forensic InvestigationJ Perform Construct Facil2017312040160833675035
– reference: NhuV-HEffectiveness assessment of keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical areaCATENA2020188104458
– reference: ZhangWGohATCZhangYChenYXiaoYAssessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splinesEng Geol20151882937
– reference: Van HoudtGMosqueraCNápolesGA review on the long short-term memory modelArtif Intell Rev20205359295955
– reference: KaplińskiOKošelevaNRopaitėGBig Data in civil engineering: a state-of-the-art surveyEng Struct Technol201684165175
– reference: Maier H, Dandy G (2000) Application of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges. In: Artificial neural networks in hydrology. Springer, pp 287–309
– reference: Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: International conference on machine learning, pp 1310–1318
– reference: Cui Y, Ju S-G, Han F, Gu T-Y (2009) An improved approach combining random PSO with BP for feedforward neural networks. In: International Conference on Artificial Intelligence and Computational Intelligence, pp 361–368
– reference: BangSParkSKimHKimHEncoder-decoder network for pixel-level road crack detection in black-box imagesComput-Aided Civil Infrastruct Eng2019348713727
– reference: HanSLiHLiMLuoXMeasuring rock surface strength based on spectrograms with deep convolutional networksComput Geosci2019133104312
– reference: KangJ-MKimI-MLeeSRyuD-WKwonJA deep CNN-based ground vibration monitoring scheme for MEMS sensed dataIEEE Geosci Remote Sens Lett2019172347351
– reference: IkizlerSBVekliMDoganEAytekinMKocabasFPrediction of swelling pressures of expansive soils using soft computing methodsNeural Comput Appl20142424734851406.74487
– reference: Ma S, Fu J, Wen Chen C, Mei T (2018b) Da-gan: Instance-level image translation by deep attention generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5657–5666
– reference: HuangYLiJFuJReview on Application of Artificial Intelligence in Civil EngineeringCMES-Comput Model Eng Sci20191213845875
– reference: QinXCuiSLiuLWangPWangMXinJPrediction of Mechanical strength based on deep learning using the scanning electron image of microscopic cemented paste backfillAdv Civ Eng201810.1155/2018/6245728
– reference: LiJLiPGuoDLiXChenZAdvanced prediction of tunnel boring machine performance based on big dataGeosci Front2020121331338
– volume: 19
  start-page: 597
  issue: 6
  year: 2004
  ident: 9967_CR17
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2004.02.128
– volume: 19
  start-page: 204
  issue: 1
  year: 2019
  ident: 9967_CR126
  publication-title: Sensors
  doi: 10.3390/s19010204
– volume: 28
  start-page: 289
  issue: 1
  year: 2017
  ident: 9967_CR199
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2345-1
– volume: 11
  start-page: 2046
  issue: 17
  year: 2019
  ident: 9967_CR70
  publication-title: Remote Sens
  doi: 10.3390/rs11172046
– volume: 10
  start-page: 11
  issue: 1
  year: 2018
  ident: 9967_CR137
  publication-title: Symmetry
  doi: 10.3390/sym10010011
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 9967_CR117
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– ident: 9967_CR96
  doi: 10.1016/j.ymssp.2020.107061
– volume: 10
  start-page: 479
  issue: 22
  year: 2017
  ident: 9967_CR158
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-017-3285-5
– volume: 23
  start-page: 130
  issue: 1
  year: 2019
  ident: 9967_CR11
  publication-title: KSCE J Civil Eng
  doi: 10.1007/s12205-018-2636-4
– volume: 63
  start-page: 12
  year: 2017
  ident: 9967_CR168
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2016.12.004
– volume: 7
  start-page: 755
  issue: 8
  year: 2019
  ident: 9967_CR182
  publication-title: Mathematics
  doi: 10.3390/math7080755
– volume: 29
  start-page: 2234
  year: 2016
  ident: 9967_CR185
  publication-title: Adv Neural Inf Process Syst
– ident: 9967_CR1
  doi: 10.1007/s10462-020-09835-4
– volume: 18
  start-page: 821
  issue: 3
  year: 2018
  ident: 9967_CR30
  publication-title: Sensors
  doi: 10.3390/s18030821
– volume: 68
  start-page: 65
  year: 2016
  ident: 9967_CR36
  publication-title: Automat Construct
  doi: 10.1016/j.autcon.2016.03.015
– volume: 111
  start-page: 1
  year: 2018
  ident: 9967_CR225
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.08.003
– ident: 9967_CR14
  doi: 10.1109/CVPR.2018.00702
– ident: 9967_CR53
  doi: 10.1016/j.cageo.2020.104470
– volume: 32
  start-page: 04017082
  issue: 2
  year: 2018
  ident: 9967_CR111
  publication-title: J Comp Civil Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000731
– volume: 16
  start-page: 59
  issue: 1
  year: 2002
  ident: 9967_CR99
  publication-title: J Comput Civil Eng
  doi: 10.1061/(ASCE)0887-3801(2002)16:1(59)
– volume: 77
  start-page: 489
  issue: 2
  year: 2018
  ident: 9967_CR75
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-016-0937-8
– ident: 9967_CR142
  doi: 10.1109/JSTARS.2020.2980895
– volume: 18
  start-page: 4436
  issue: 12
  year: 2018
  ident: 9967_CR220
  publication-title: Sensors
  doi: 10.3390/s18124436
– volume: 19
  start-page: 153
  year: 2007
  ident: 9967_CR20
  publication-title: Adv Neural Inf Process Syst
– ident: 9967_CR119
  doi: 10.1016/0148-9062(92)91044-6
– volume: 69
  start-page: 339
  issue: 3
  year: 1998
  ident: 9967_CR106
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(98)00126-6
– volume: 12
  start-page: 331
  issue: 1
  year: 2020
  ident: 9967_CR130
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.02.011
– volume: 11
  start-page: 1095
  issue: 4
  year: 2019
  ident: 9967_CR244
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2019.12.003
– volume: 6
  start-page: 1135
  issue: 4
  year: 2011
  ident: 9967_CR7
  publication-title: Int J Electrochem Sci
  doi: 10.1016/S1452-3981(23)15062-0
– volume: 9
  start-page: 49
  issue: 1
  year: 2015
  ident: 9967_CR191
  publication-title: Int J Geotech Eng
  doi: 10.1179/1939787914Y.0000000058
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  ident: 9967_CR115
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554195
– volume: 7
  start-page: 186657
  year: 2019
  ident: 9967_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961375
– volume: 20
  start-page: 400
  issue: 4
  year: 2005
  ident: 9967_CR37
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2005.02.001
– volume: 40
  start-page: 1599
  issue: 7
  year: 2017
  ident: 9967_CR121
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2737631
– volume: 111
  start-page: 89
  year: 2019
  ident: 9967_CR105
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.12.006
– start-page: 4845
  volume-title: 2017 IEEE International Conference on Acoustics
  year: 2017
  ident: 9967_CR238
– ident: 9967_CR107
– volume: 9
  start-page: 3484
  issue: 17
  year: 2019
  ident: 9967_CR83
  publication-title: Appl Sci-Basel
  doi: 10.3390/app9173484
– ident: 9967_CR212
– ident: 9967_CR240
  doi: 10.3997/2214-4609.201700945
– volume: 53
  start-page: 5929
  year: 2020
  ident: 9967_CR210
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09838-1
– year: 2018
  ident: 9967_CR178
  publication-title: Adv Civ Eng
  doi: 10.1155/2018/2837571
– volume: 7
  start-page: 45
  issue: 1
  year: 2016
  ident: 9967_CR234
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2014.10.003
– ident: 9967_CR31
  doi: 10.1109/CVPR.2018.00986
– volume: 8
  start-page: 2493
  issue: 12
  year: 2018
  ident: 9967_CR242
  publication-title: Appl Sci-Basel
  doi: 10.3390/app8122493
– ident: 9967_CR187
  doi: 10.3390/app7010110
– ident: 9967_CR230
  doi: 10.1109/ICMA.2017.8015785
– volume: 106
  start-page: 103593
  year: 2020
  ident: 9967_CR250
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103593
– volume: 8
  start-page: 185177
  year: 2020
  ident: 9967_CR228
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029562
– volume: 19
  start-page: 221
  year: 2017
  ident: 9967_CR194
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 34
  start-page: 347
  issue: 2
  year: 2018
  ident: 9967_CR153
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– volume: 101
  start-page: 023305
  issue: 2
  year: 2020
  ident: 9967_CR33
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.101.023305
– volume: 7
  start-page: 64186
  year: 2019
  ident: 9967_CR200
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916330
– volume: 53
  start-page: 5455
  issue: 8
  year: 2020
  ident: 9967_CR109
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09825-6
– volume: 33
  start-page: 05018004
  issue: 1
  year: 2019
  ident: 9967_CR259
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000796
– ident: 9967_CR150
  doi: 10.1109/IJCNN.2019.8852164
– year: 2020
  ident: 9967_CR252
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2019.12.003
– ident: 9967_CR248
  doi: 10.1080/17499518.2019.1674340
– volume: 8
  start-page: 165989
  year: 2020
  ident: 9967_CR129
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015486
– ident: 9967_CR108
  doi: 10.1109/CVPR.2019.00453
– volume: 37
  start-page: 323
  issue: 3
  year: 2010
  ident: 9967_CR84
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2009.11.005
– ident: 9967_CR201
  doi: 10.1190/segam2016-13972613.1
– volume: 9
  start-page: 2
  issue: 1
  year: 2018
  ident: 9967_CR54
  publication-title: Int J Geo-Eng
  doi: 10.1186/s40703-017-0067-6
– volume: 64
  start-page: 24
  year: 2017
  ident: 9967_CR239
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2017.01.009
– volume: 24
  start-page: 1673
  issue: 4
  year: 2020
  ident: 9967_CR10
  publication-title: Comput Geosci
  doi: 10.1007/s10596-020-09978-x
– ident: 9967_CR35
  doi: 10.1109/CVPR.2018.00916
– ident: 9967_CR145
  doi: 10.1088/1742-6596/364/1/012114
– volume: 48
  start-page: 141
  issue: 2
  year: 2008
  ident: 9967_CR207
  publication-title: Soils Found
  doi: 10.3208/sandf.48.141
– volume: 25
  start-page: 2025
  year: 2014
  ident: 9967_CR235
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1690-1
– volume: 30
  start-page: 489
  issue: 6
  year: 2003
  ident: 9967_CR120
  publication-title: Comput Geotech
  doi: 10.1016/S0266-352X(03)00058-2
– volume: 177
  start-page: 941
  year: 2019
  ident: 9967_CR25
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.02.037
– ident: 9967_CR146
  doi: 10.1109/ICCVW.2017.254
– volume: 7
  start-page: 66703
  year: 2019
  ident: 9967_CR254
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917756
– volume: 35
  start-page: 18
  year: 2017
  ident: 9967_CR85
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– volume: 7
  start-page: 158
  issue: 4
  year: 2018
  ident: 9967_CR81
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi7040158
– volume: 135
  start-page: 104357
  year: 2020
  ident: 9967_CR184
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.104357
– year: 2018
  ident: 9967_CR177
  publication-title: Adv Civ Eng
  doi: 10.1155/2018/6245728
– ident: 9967_CR43
  doi: 10.1109/YAC.2016.7804935
– volume: 141
  start-page: 245
  issue: 4
  year: 1994
  ident: 9967_CR208
  publication-title: IEE Proc Vis Image Signal Process
  doi: 10.1049/ip-vis:19941301
– volume: 86
  start-page: 118
  year: 2018
  ident: 9967_CR44
  publication-title: Automat construct
  doi: 10.1016/j.autcon.2017.11.002
– ident: 9967_CR52
  doi: 10.21437/Interspeech.2014-443
– volume: 44
  start-page: 1215
  issue: 10
  year: 2007
  ident: 9967_CR51
  publication-title: Can Geotech J
  doi: 10.1139/T07-052
– volume: 110
  start-page: 387
  year: 2017
  ident: 9967_CR113
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2017.09.029
– volume: 45
  start-page: 5742
  issue: 11
  year: 2018
  ident: 9967_CR69
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL078202
– volume: 105
  start-page: 102840
  year: 2019
  ident: 9967_CR260
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2019.102840
– volume: 16
  start-page: 541
  issue: 3
  year: 2019
  ident: 9967_CR247
  publication-title: Petroleum Science
  doi: 10.1007/s12182-019-0328-4
– volume: 188
  start-page: 104426
  year: 2020
  ident: 9967_CR22
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104426
– volume: 9
  start-page: 3553
  issue: 17
  year: 2019
  ident: 9967_CR258
  publication-title: Appl Sci-Basel
  doi: 10.3390/app9173553
– volume: 18
  start-page: 1372
  issue: 5
  year: 2014
  ident: 9967_CR110
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-014-0316-6
– ident: 9967_CR144
  doi: 10.1109/CVPR.2018.00593
– volume: 125
  start-page: 81
  issue: 1
  year: 2018
  ident: 9967_CR160
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-018-1039-9
– volume: 168
  start-page: 133
  year: 2016
  ident: 9967_CR2
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2015.12.012
– volume: 7
  start-page: 33
  issue: 1
  year: 2016
  ident: 9967_CR192
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2014.10.002
– volume: 17
  start-page: 2443
  issue: 11
  year: 2017
  ident: 9967_CR41
  publication-title: Sensors
  doi: 10.3390/s17112443
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 9967_CR91
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 9967_CR21
– volume: 12
  start-page: 877
  issue: 4&5
  year: 2019
  ident: 9967_CR61
  publication-title: Dis Continus Dynam Syst-S
– volume: 20
  start-page: 1425
  issue: 5
  year: 2020
  ident: 9967_CR211
  publication-title: Sensors
  doi: 10.3390/s20051425
– year: 2020
  ident: 9967_CR64
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2020.01.003
– ident: 9967_CR136
  doi: 10.5402/2012/678329
– volume: 51
  start-page: 3029
  issue: 10
  year: 2018
  ident: 9967_CR174
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1513-2
– volume: 7
  start-page: 53040
  year: 2019
  ident: 9967_CR197
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– volume: 8
  start-page: 44063
  year: 2020
  ident: 9967_CR66
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977880
– volume: 8
  start-page: 54564
  year: 2020
  ident: 9967_CR179
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981561
– ident: 9967_CR4
  doi: 10.2118/191906-MS
– volume: 231
  start-page: 1206
  issue: 6
  year: 2017
  ident: 9967_CR9
  publication-title: Proc Inst Mech Eng, Part E: J Proc Mech Eng
  doi: 10.1177/0954408916659310
– ident: 9967_CR76
– ident: 9967_CR28
  doi: 10.1155/2012/235929
– volume: 6
  start-page: 2344
  issue: 7
  year: 2011
  ident: 9967_CR8
  publication-title: Int J Electrochem Sci
  doi: 10.1016/S1452-3981(23)18189-2
– volume: 31
  start-page: 04016083
  issue: 2
  year: 2017
  ident: 9967_CR204
  publication-title: J Perform Construct Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0000947
– volume: 12
  start-page: 365
  issue: 1
  year: 2020
  ident: 9967_CR249
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.03.003
– ident: 9967_CR24
  doi: 10.4043/28015-MS
– volume: 176
  start-page: 3593
  issue: 8
  year: 2019
  ident: 9967_CR216
  publication-title: Pure Appl Geophys
  doi: 10.1007/s00024-019-02152-0
– volume: 95
  start-page: 103156
  year: 2020
  ident: 9967_CR255
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.103156
– volume: 6
  start-page: 1146
  issue: 4
  year: 2011
  ident: 9967_CR6
  publication-title: Int J Electrochem Sci
  doi: 10.1016/S1452-3981(23)15063-2
– volume: 11
  start-page: 042609
  issue: 4
  year: 2017
  ident: 9967_CR12
  publication-title: J Appl Remote Sens
– volume: 70
  start-page: 148
  year: 2017
  ident: 9967_CR74
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2017.07.013
– volume: 91
  start-page: 566
  year: 2016
  ident: 9967_CR135
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.144
– ident: 9967_CR222
  doi: 10.1016/j.cageo.2020.104527
– ident: 9967_CR18
  doi: 10.1561/2200000006
– volume: 17
  start-page: 347
  issue: 2
  year: 2019
  ident: 9967_CR103
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2019.2918641
– volume: 7
  start-page: 3
  issue: 1
  year: 2016
  ident: 9967_CR114
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2015.07.003
– volume: 16
  start-page: 289
  year: 2011
  ident: 9967_CR155
  publication-title: J Geotech Eng
– ident: 9967_CR171
  doi: 10.1109/CVPR.2018.00233
– ident: 9967_CR203
– volume: 16
  start-page: 982
  issue: 6
  year: 2019
  ident: 9967_CR122
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2018.2889307
– ident: 9967_CR243
  doi: 10.1109/CVPR.2018.00963
– volume: 96
  start-page: 043309
  issue: 4
  year: 2017
  ident: 9967_CR159
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.96.043309
– volume: 267
  start-page: 378
  year: 2017
  ident: 9967_CR138
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.023
– volume: 42
  start-page: 135
  issue: 1
  year: 2015
  ident: 9967_CR39
  publication-title: Appl Intell
  doi: 10.1007/s10489-014-0576-3
– volume: 32
  start-page: 85
  issue: 1
  year: 2016
  ident: 9967_CR78
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0400-7
– volume: 6
  start-page: 52286
  year: 2018
  ident: 9967_CR195
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870203
– volume: 84
  start-page: 461
  year: 2019
  ident: 9967_CR245
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.11.046
– volume: 10
  start-page: 1389
  issue: 10
  year: 2018
  ident: 9967_CR131
  publication-title: Water
  doi: 10.3390/w10101389
– volume: 467
  start-page: 35
  year: 2018
  ident: 9967_CR59
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.07.049
– volume: 159
  start-page: 473
  year: 2018
  ident: 9967_CR176
  publication-title: Materials
– ident: 9967_CR118
  doi: 10.1109/CVPR.2017.19
– ident: 9967_CR190
  doi: 10.1109/DICTA.2016.7797053
– volume: 36
  start-page: 49
  issue: 1
  year: 2001
  ident: 9967_CR193
  publication-title: Artificial neural network applications in geotechnical engineering Australian geomechanics
– volume: 9
  start-page: 979
  issue: 6
  year: 2017
  ident: 9967_CR45
  publication-title: Sustainability
  doi: 10.3390/su9060979
– volume: 12
  start-page: 752
  issue: 5
  year: 2020
  ident: 9967_CR139
  publication-title: Remote Sens
  doi: 10.3390/rs12050752
– volume: 7
  start-page: 54305
  year: 2019
  ident: 9967_CR221
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912419
– ident: 9967_CR151
  doi: 10.21437/Interspeech.2010-343
– volume: 41
  start-page: 1555
  issue: 4
  year: 2020
  ident: 9967_CR256
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2019.1672904
– ident: 9967_CR58
  doi: 10.1007/s00521-011-0734-z
– volume: 123
  start-page: 104084
  year: 2019
  ident: 9967_CR89
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2019.104084
– volume: 8
  start-page: 1755
  year: 2020
  ident: 9967_CR140
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962496
– volume: 246
  start-page: 82
  year: 2018
  ident: 9967_CR163
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2018.09.018
– volume: 98
  start-page: 225
  year: 2019
  ident: 9967_CR62
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2018.11.013
– volume: 133
  start-page: 104314
  year: 2019
  ident: 9967_CR213
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.104314
– volume: 103
  start-page: 497
  issue: 3
  year: 2014
  ident: 9967_CR68
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-014-0313-8
– ident: 9967_CR63
  doi: 10.3934/dcdss.2019045
– volume: 1
  start-page: 270
  issue: 2
  year: 1989
  ident: 9967_CR217
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.2.270
– volume: 16
  start-page: 677
  issue: 4
  year: 2019
  ident: 9967_CR227
  publication-title: Landslides
  doi: 10.1007/s10346-018-01127-x
– volume: 8
  start-page: 165
  issue: 4
  year: 2016
  ident: 9967_CR104
  publication-title: Eng Struct Technol
– ident: 9967_CR152
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 9967_CR112
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 9967_CR77
– volume: 8
  start-page: 94440
  year: 2020
  ident: 9967_CR128
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995592
– volume: 31
  start-page: 327
  issue: 2
  year: 2019
  ident: 9967_CR154
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2990-z
– volume: 21
  start-page: 1353
  issue: 6
  year: 2014
  ident: 9967_CR116
  publication-title: Tehnički vjesnik
– volume: 174
  start-page: 216
  year: 2019
  ident: 9967_CR98
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2018.11.023
– volume: 52
  start-page: 77
  issue: 1
  year: 2019
  ident: 9967_CR166
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-018-09679-z
– volume: 19
  start-page: 3914
  issue: 18
  year: 2019
  ident: 9967_CR246
  publication-title: Sensors
  doi: 10.3390/s19183914
– ident: 9967_CR88
  doi: 10.1117/12.2266226
– volume: 121
  start-page: 845
  issue: 3
  year: 2019
  ident: 9967_CR95
  publication-title: CMES-Comput Model Eng Sci
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 9967_CR90
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– ident: 9967_CR226
  doi: 10.1109/IGARSS.2017.8127091
– volume: 84
  start-page: 1
  year: 2017
  ident: 9967_CR55
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.053
– ident: 9967_CR94
  doi: 10.1016/j.tust.2018.07.006
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  ident: 9967_CR232
  publication-title: Comput-Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12313
– volume: 61
  start-page: 85
  year: 2015
  ident: 9967_CR188
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 111
  start-page: 87
  year: 2018
  ident: 9967_CR223
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.10.013
– volume: 6
  start-page: 30958
  year: 2018
  ident: 9967_CR132
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2839754
– volume: 24
  start-page: 1823
  year: 2014
  ident: 9967_CR186
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1434-7
– volume: 15
  start-page: 455
  issue: 6
  year: 1982
  ident: 9967_CR56
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(82)90024-3
– volume: 887
  start-page: 012089
  issue: 1
  year: 2017
  ident: 9967_CR34
  publication-title: J Phys: Conference Series, IOP Publish
– ident: 9967_CR214
  doi: 10.1007/s10064-020-01730-0
– volume: 10
  start-page: 385
  issue: 17
  year: 2017
  ident: 9967_CR27
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-017-3167-x
– volume: 42
  start-page: 60
  year: 2017
  ident: 9967_CR134
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 31
  start-page: 04017061
  issue: 5
  year: 2017
  ident: 9967_CR205
  publication-title: J Perform Construct Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001058
– ident: 9967_CR172
  doi: 10.1080/17499518.2019.1700423
– ident: 9967_CR170
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 9967_CR19
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279181
– volume: 19
  start-page: 2895
  issue: 13
  year: 2019
  ident: 9967_CR149
  publication-title: Sensors
  doi: 10.3390/s19132895
– volume: 16
  start-page: 865
  issue: 2
  year: 2014
  ident: 9967_CR141
  publication-title: IEEE Trans Intell Transp Syst
– volume: 53
  start-page: 2709
  year: 2020
  ident: 9967_CR42
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09744-1
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 9967_CR92
  publication-title: Neural netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 12
  start-page: 2719
  issue: 8
  year: 2012
  ident: 9967_CR124
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-12-2719-2012
– volume: 27
  start-page: 892
  issue: 9
  year: 2007
  ident: 9967_CR3
  publication-title: Soil Dynam Earthquake Eng
  doi: 10.1016/j.soildyn.2006.12.009
– volume: 34
  start-page: 346
  issue: 5
  year: 2007
  ident: 9967_CR162
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.06.006
– ident: 9967_CR215
– volume: 12
  start-page: 5047
  issue: 12
  year: 2019
  ident: 9967_CR229
  publication-title: IEEE J Select Topics Appl Earth Observat Remote Sens
  doi: 10.1109/JSTARS.2019.2951725
– volume: 7
  start-page: 182527
  year: 2019
  ident: 9967_CR127
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2959820
– volume: 118
  start-page: 112
  year: 2018
  ident: 9967_CR175
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.02.028
– ident: 9967_CR67
  doi: 10.1016/j.asoc.2018.05.018
– volume: 24
  start-page: 473
  issue: 2
  year: 2014
  ident: 9967_CR97
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1254-1
– volume: 15
  start-page: 1145
  issue: 6
  year: 2018
  ident: 9967_CR143
  publication-title: China Landslides
  doi: 10.1007/s10346-017-0941-5
– volume: 7
  start-page: 182643
  year: 2019
  ident: 9967_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931074
– volume: 31
  start-page: 04017029
  issue: 5
  year: 2017
  ident: 9967_CR237
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000682
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 9967_CR253
  publication-title: IEEE Trans neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2876865
– volume: 13
  start-page: 1397
  issue: 6
  year: 2020
  ident: 9967_CR100
  publication-title: Materials
  doi: 10.3390/ma13061397
– ident: 9967_CR80
  doi: 10.4324/9780203451519
– volume: 16
  start-page: 1929
  issue: 12
  year: 2019
  ident: 9967_CR169
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2019.2913593
– volume: 16
  start-page: 3168
  issue: 5
  year: 2019
  ident: 9967_CR231
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2019.2902129
– volume: 19
  start-page: 43
  issue: 1
  year: 2005
  ident: 9967_CR50
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2005.01.004
– volume: 31
  start-page: D4016007
  issue: 3
  year: 2017
  ident: 9967_CR165
  publication-title: J Perform Construct Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0000958
– ident: 9967_CR147
  doi: 10.1007/978-94-015-9341-0_15
– ident: 9967_CR189
  doi: 10.1109/IJCNN.2011.6033589
– volume: 8
  start-page: 64310
  year: 2020
  ident: 9967_CR65
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984515
– volume: 33
  start-page: 638
  issue: 8
  year: 2018
  ident: 9967_CR224
  publication-title: Comput-Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12367
– volume: 36
  start-page: 1125
  issue: 7
  year: 2009
  ident: 9967_CR164
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2009.04.003
– volume: 12
  start-page: 469
  issue: 1
  year: 2020
  ident: 9967_CR251
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.03.007
– volume: 52
  start-page: 88
  year: 2013
  ident: 9967_CR23
  publication-title: Soil Dynam Earthquake Eng
  doi: 10.1016/j.soildyn.2013.05.002
– volume: 32
  start-page: 04018041
  issue: 5
  year: 2018
  ident: 9967_CR241
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000775
– volume: 24
  start-page: 1115
  issue: 5
  year: 2014
  ident: 9967_CR183
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1334-2
– ident: 9967_CR5
– ident: 9967_CR148
  doi: 10.1109/ICCV.2017.304
– volume: 28
  start-page: 269
  issue: 4
  year: 2001
  ident: 9967_CR181
  publication-title: Comput Geotech
  doi: 10.1016/S0266-352X(00)00033-1
– volume: 31
  start-page: 04017052
  issue: 5
  year: 2017
  ident: 9967_CR257
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000700
– ident: 9967_CR57
  doi: 10.1007/s00521-011-0735-y
– volume: 49
  start-page: 2793
  issue: 7
  year: 2019
  ident: 9967_CR173
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-01396-y
– volume: 11
  start-page: 196
  issue: 2
  year: 2019
  ident: 9967_CR71
  publication-title: Remote Sens
  doi: 10.3390/rs11020196
– volume: 107
  start-page: 102928
  year: 2019
  ident: 9967_CR123
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2019.102928
– volume: 188
  start-page: 104458
  year: 2020
  ident: 9967_CR167
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104458
– volume: 25
  start-page: 1212
  issue: 6
  year: 2018
  ident: 9967_CR60
  publication-title: Saudi J biol sci
  doi: 10.1016/j.sjbs.2017.11.022
– volume: 19
  start-page: 301
  issue: 4
  year: 1997
  ident: 9967_CR218
  publication-title: Decis Support Syst
  doi: 10.1016/S0167-9236(96)00070-X
– volume: 133
  start-page: 104312
  year: 2019
  ident: 9967_CR82
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.104312
– volume: 187
  start-page: 106742
  year: 2020
  ident: 9967_CR102
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.106742
– ident: 9967_CR198
  doi: 10.1109/ICDAR.2003.1227801
– volume: 77
  start-page: 188
  year: 2018
  ident: 9967_CR26
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.04.007
– ident: 9967_CR79
  doi: 10.3390/rs9121220
– volume: 17
  start-page: 2231
  issue: 9
  year: 2020
  ident: 9967_CR206
  publication-title: Landslides
  doi: 10.1007/s10346-020-01453-z
– ident: 9967_CR15
  doi: 10.1016/B978-012161964-0/50007-8
– volume: 35
  start-page: 2279
  issue: 10
  year: 2002
  ident: 9967_CR49
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00178-9
– volume: 8
  start-page: 47209
  year: 2020
  ident: 9967_CR48
  publication-title: Access
  doi: 10.1109/ACCESS.2020.2976910
– volume: 27
  start-page: 1056
  issue: 12
  year: 2007
  ident: 9967_CR16
  publication-title: Soil Dynam Earthquake Eng
  doi: 10.1016/j.soildyn.2007.03.007
– ident: 9967_CR180
– volume: 29
  start-page: 04014078
  issue: 3
  year: 2015
  ident: 9967_CR29
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0000557
– volume: 15
  start-page: 831
  issue: 5
  year: 2011
  ident: 9967_CR157
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-011-1154-4
– volume: 32
  start-page: 1059
  issue: 6
  year: 1995
  ident: 9967_CR73
  publication-title: Can Geotech J
  doi: 10.1139/t95-103
– volume: 32
  start-page: 495
  year: 2020
  ident: 9967_CR156
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04109-9
– volume: 93
  start-page: 103094
  year: 2019
  ident: 9967_CR219
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.103094
– volume: 8
  start-page: 170939
  year: 2020
  ident: 9967_CR196
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022786
– volume-title: Lion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District
  year: 2020
  ident: 9967_CR202
  doi: 10.1155/2020/8685724
– volume: 262
  start-page: 105307
  year: 2019
  ident: 9967_CR161
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2019.105307
– volume: 188
  start-page: 29
  year: 2015
  ident: 9967_CR236
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.01.009
– volume: 399
  start-page: 227
  year: 2020
  ident: 9967_CR209
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.040
– ident: 9967_CR40
  doi: 10.1007/978-3-642-05253-8_40
– volume: 15
  start-page: 11
  issue: 1
  year: 2002
  ident: 9967_CR133
  publication-title: Neural netw
  doi: 10.1016/S0893-6080(01)00111-3
– volume: 34
  start-page: 713
  issue: 8
  year: 2019
  ident: 9967_CR13
  publication-title: Comput-Aided Civil Infrastruct Eng
  doi: 10.1111/mice.12440
– volume: 77
  start-page: 166
  year: 2018
  ident: 9967_CR93
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.04.002
– volume: 11
  start-page: 739
  issue: 3
  year: 2020
  ident: 9967_CR101
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2019.10.004
– volume: 14
  start-page: 241
  year: 2020
  ident: 9967_CR47
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-019-8208-z
– ident: 9967_CR87
  doi: 10.1109/CVPR.2016.90
– ident: 9967_CR86
  doi: 10.1109/ICCV.2015.123
– volume: 48
  start-page: 82
  year: 2013
  ident: 9967_CR233
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2012.09.016
– volume: 170
  start-page: 1
  year: 2014
  ident: 9967_CR72
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2013.12.003
– volume: 32
  start-page: 333
  year: 2012
  ident: 9967_CR38
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2012.02.023
– ident: 9967_CR125
  doi: 10.1109/CVPR.2015.7299170
SSID ssj0005243
Score 2.6748464
Snippet With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5633
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Computational linguistics
Computer Science
Data mining
Deep learning
Engineering
Generative adversarial networks
Geotechnical engineering
Geotechnology
Language processing
Machine learning
Natural language interfaces
Neural networks
Recurrent neural networks
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SL158i9UqOQgedGEfea23IhYR9GShByEk2aQt1La06_93spu19QmeNzu7zGQyM-SbbxC6oIktRJHkEeVORCTxIACV6EhYSCfy2BlXgccfn9h9nzwM6CA0hS0btHtzJVmd1GvNboSlkYcUQFYD7g01zyaF2t0Dufppdw3YUWPlUpZHUFAkoVXmZxmfwtHXQ_nb7WgVdHq7aDtki7hbm3cPbdjpPtppJjHg4JgH6KW7uofGM4cLa-c4DIQYYjUZzhbjcvS6xOMpHtpZTdwK1sF2RUd4gxVejiAbxyaMP8B1X8sh6vfunm_vozA3ITIkJWUEIYfZXDEDqUNuCBexYYXgximorbQRorA01cJwlWnwSRVzx3XOiBIxjVOdZEeoNZ1N7THCmrkcSi5fBWbEEqezjPOYugIEOJqRNkoa9UkTSMX9bIuJXNEhe5VLULmsVC6TNrr6eGdeU2r8ufrSW0V6fwPJRoW2Afg_z1wluxBcPUs94W3UaQwngyMuZUpFlZIQ1kbXjTFXj3__7sn_lp-irdRvqwro0kGtcvFmzyBdKfV5tTvfAUV93lI
  priority: 102
  providerName: Springer Nature
Title Application of deep learning algorithms in geotechnical engineering: a short critical review
URI https://link.springer.com/article/10.1007/s10462-021-09967-1
https://www.proquest.com/docview/2588185346
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH9i7QUOfAwQHaPyAYkDWMSJYztcUEDtJtAGQlQaEpJlO3aHNNqOlv-f58QhA8QuOeTjJfHP78t-HwBPS-Yb1bCKljIoylkMAjDMUuXRnKiy4EIbPH5yKo4X_N1ZeZYW3LYprLKXia2gbtYurpG_zEvV6hYuXm8uaewaFXdXUwuNPRijCFZqBOM3s9OPn64EeXRxc7moKDoXLKXNpOQ5LnIaQxTQSkJxwf5QTX8L6H92SlsFNL8Lt5PlSOoO6ntww6_24U7flYEkJt2HW1dKDN6Hr_WwQ03WgTTeb0hqFbEk5mKJ_7g7_74l31Zk6dddSVfEjfiByitiyPYc7XTiUmME0mW8PIDFfPb57TFNHRWo4znfURwj4SsjHBoVleNSZU40Srpg0OuyTqnGl7lVTprCIreaTAZpK8GNysost6x4CKPVeuUfAbEiVOiMRf-w4J4HWxRSZmVokEBAmCbA-sHULpUbj10vLvRQKDkCoBEA3QKg2QSe_35m0xXbuPbuZxEjHTkRKTuTEgrw-2JNK12j2o3167mcwGEPo04sutXDhJrAix7a4fL_33twPbXHcDOPk6oNeTmE0e7HT_8EDZedncKemh9NYVwffXk_m6a5imdP2Ac8LvL6F4qW67E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOBQqILQV8AHGAiNhxbAcJoRWwbOnj1Eo9IBnbsbdI7e62uxXiT_EbGScOKSB66znJJPL3eR7xPACeldTXqqZVVsqgMk5jEoChNlMe3YkqDy40yeO7e2J8wD8flocr8LOrhYlplZ1ObBR1PXPxH_lrVqrGtnDxbn6axalR8XS1G6HR0mLb__iOIdvi7dYHxPc5Y6OP--_HWZoqkDnO-DJDhSx8ZYRDw1o5LlXuRK2kCwYjD-uUqn3JrHLSFBYZa3IZpK0ENyovc2ZpgXKvwXVeoCWPlemjTxdSStosPSaqDEMZmop0UqkeFyyLCRHok6Fyon8Ywr_NwT_nso25G92BteSnkmFLrLuw4qfrcLubAUGSSliHWxcaGt6DL8P-PJzMAqm9n5M0mGJCzPEEV3R5dLIg36Zk4mdtA1lkCfG9lDfEkMURRgXEpTEMpK2vuQ8HV7LSD2B1Opv6h0CsCBWGfjEaLbjnwRaFlHkZahQQkBQDoN1iapeam8cZG8e6b8scAdAIgG4A0HQAL38_M29be1x694uIkY77HiU7k8oX8PtiBy09RCMfu-VzOYDNDkadFMJC9_QdwKsO2v7y_9-7cbm0p3BjvL-7o3e29rYfwU0WCdYk22zC6vLs3D9Gl2lpnzQ8JfD1qjfGL5CTIhU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKOAWCjgA4gDWI0dJ3aQEFpoVy2FVYWo1AOSsR17i1R2F3YR4q_x6xgnDikgeus5ySTyfJ5H_M0MwMOC-VrVrKKFDIoKFkkAhlmqPIYTVRZcaMjjbyfl7qF4fVQcrcHPrhYm0io7m9gY6nru4j_yLV6oxreIciskWsTB9vjF4guNE6TiSWs3TqOFyL7_8R3Tt-XzvW3U9SPOxzvvX-3SNGGAOsHFiqJxLn1lSodOtnJCqsyVtZIuGMxCrFOq9gW3ykmTW0SvyWSQtiqFUVmRcctylHsB1mXMigaw_nJncvDuFMGk5ezxsqKY2LBUspMK90TJaaRHYISGpor94Rb_dg7_nNI2zm98Da6kqJWMWphdhzU_24Cr3UQIkgzEBlw-1d7wBnwY9afjZB5I7f2CpDEVU2JOprimq-PPS_JpRqZ-3raTRcwQ30t5RgxZHmOOQFwaykDaapubcHgua30LBrP5zN8GYstQYSIYc9NceBFsnkuZFaFGAQEhMgTWLaZ2qdV5nLhxovsmzVEBGhWgGwVoNoQnv59ZtI0-zrz7cdSRjlYAJTuTihnw-2I_LT1Clx975ws5hM1OjTqZh6XuwTyEp51q-8v_f--ds6U9gIu4KfSbvcn-XbjEI74a5s0mDFZfv_l7GD-t7P0EVAIfz3tv_AI0lien
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+algorithms+in+geotechnical+engineering%3A+a+short+critical+review&rft.jtitle=The+Artificial+intelligence+review&rft.au=Zhang%2C+Wengang&rft.au=Li%2C+Hongrui&rft.au=Li%2C+Yongqin&rft.au=Liu%2C+Hanlong&rft.date=2021-12-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=54&rft.issue=8&rft.spage=5633&rft.epage=5673&rft_id=info:doi/10.1007%2Fs10462-021-09967-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_021_09967_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon