Application of deep learning algorithms in geotechnical engineering: a short critical review
With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful feature learning and expression capabilities compared with the traditional machine learning (ML) methods, which att...
Saved in:
Published in | The Artificial intelligence review Vol. 54; no. 8; pp. 5633 - 5673 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful feature learning and expression capabilities compared with the traditional machine learning (ML) methods, which attracts worldwide researchers from different fields to its increasingly wide applications. Furthermore, in the field of geochnical engineering, DL has been widely adopted in various research topics, a comprehensive review summarizing its application is desirable. Consequently, this study presented the state of practice of DL in geotechnical engineering, and depicted the statistical trend of the published papers. Four major algorithms, including feedforward neural (FNN), recurrent neural network (RNN), convolutional neural network (CNN) and generative adversarial network (GAN) along with their geotechnical applications were elaborated. In addition, a thorough summary containing pubilished literatures, the corresponding reference cases, the adopted DL algorithms as well as the related geotechnical topics was compiled. Furthermore, the challenges and perspectives of future development of DL in geotechnical engineering were presented and discussed. |
---|---|
AbstractList | With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful feature learning and expression capabilities compared with the traditional machine learning (ML) methods, which attracts worldwide researchers from different fields to its increasingly wide applications. Furthermore, in the field of geochnical engineering, DL has been widely adopted in various research topics, a comprehensive review summarizing its application is desirable. Consequently, this study presented the state of practice of DL in geotechnical engineering, and depicted the statistical trend of the published papers. Four major algorithms, including feedforward neural (FNN), recurrent neural network (RNN), convolutional neural network (CNN) and generative adversarial network (GAN) along with their geotechnical applications were elaborated. In addition, a thorough summary containing pubilished literatures, the corresponding reference cases, the adopted DL algorithms as well as the related geotechnical topics was compiled. Furthermore, the challenges and perspectives of future development of DL in geotechnical engineering were presented and discussed. |
Audience | Academic |
Author | Zhang, Wengang Chen, Yumin Li, Hongrui Ding, Xuanming Li, Yongqin Liu, Hanlong |
Author_xml | – sequence: 1 givenname: Wengang surname: Zhang fullname: Zhang, Wengang email: zhangwg@cqu.edu.cn organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University – sequence: 2 givenname: Hongrui surname: Li fullname: Li, Hongrui organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University – sequence: 3 givenname: Yongqin surname: Li fullname: Li, Yongqin organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University – sequence: 4 givenname: Hanlong surname: Liu fullname: Liu, Hanlong organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University – sequence: 5 givenname: Yumin surname: Chen fullname: Chen, Yumin organization: College of Civil and Transportation Engineering, Hohai University – sequence: 6 givenname: Xuanming surname: Ding fullname: Ding, Xuanming organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, School of Civil Engineering, Chongqing University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz1uT7Eey3krxCwpe9CaEbHZ2m7JN1mSr-O9Nu4LgoeQwMHmfTOaZoYl1FhC6pmRBCeG3gZKsYAlhNCFlWfCEnqEpzXma8NifoClhRZkwwegFmoWwJYTkLEun6H3Z953RajDOYtfgGqDHHShvjW2x6lrnzbDZBWwsbsENoDc2xjsMtjUWwMfYHVY4bJwfsI7h462HTwNfl-i8UV2Aq986R28P96-rp2T98vi8Wq4TnbFsSCgTBZSq0Eykpc64ILqoBdeNKktRaSFqyFklNFdpRXKqCG94VRaZEiQnrKLpHN2M7_befewhDHLr9t7GkZLlQlCRp1kRU4sx1aoOpLGNG7zS8dSwMzr6bEzsLzmNlhjPeATYCGjvQvDQyN6bnfLfkhJ50C5H7TJql0ft8vAX8Q_SZjjqjdNMdxpNRzT0B63g_9Y4Qf0A9kWY-A |
CitedBy_id | crossref_primary_10_3390_su131910541 crossref_primary_10_1002_gj_4976 crossref_primary_10_1109_TNNLS_2021_3117878 crossref_primary_10_1038_s41598_024_69316_4 crossref_primary_10_1080_1064119X_2024_2349801 crossref_primary_10_1007_s40891_023_00427_0 crossref_primary_10_1007_s41870_025_02416_0 crossref_primary_10_1007_s40808_022_01489_1 crossref_primary_10_3390_eng4020087 crossref_primary_10_1007_s42107_025_01287_x crossref_primary_10_1007_s11440_022_01695_2 crossref_primary_10_1016_j_eswa_2025_127252 crossref_primary_10_3390_s22207814 crossref_primary_10_3390_app132011181 crossref_primary_10_1016_j_jrmge_2024_02_048 crossref_primary_10_1007_s40098_024_00957_y crossref_primary_10_1016_j_ijdrr_2024_104966 crossref_primary_10_1007_s00603_024_04312_8 crossref_primary_10_1016_j_compgeo_2024_106085 crossref_primary_10_1016_j_autcon_2024_105678 crossref_primary_10_1007_s40098_024_00933_6 crossref_primary_10_1007_s11440_022_01590_w crossref_primary_10_1007_s11709_023_0002_1 crossref_primary_10_1007_s40808_023_01823_1 crossref_primary_10_1038_s41598_024_62921_3 crossref_primary_10_1080_23311916_2025_2467144 crossref_primary_10_1088_1361_6463_ad11bb crossref_primary_10_1016_j_aei_2022_101671 crossref_primary_10_1080_19648189_2024_2416441 crossref_primary_10_1016_j_istruc_2024_107369 crossref_primary_10_3390_su15021408 crossref_primary_10_1016_j_tust_2022_104405 crossref_primary_10_1007_s00521_022_07856_4 crossref_primary_10_1007_s41939_023_00154_z crossref_primary_10_1007_s00603_023_03698_1 crossref_primary_10_3390_su15065470 crossref_primary_10_1007_s12517_022_09528_y crossref_primary_10_1016_j_trgeo_2022_100745 crossref_primary_10_1007_s40515_025_00553_4 crossref_primary_10_1007_s11440_022_01777_1 crossref_primary_10_2166_aqua_2023_042 crossref_primary_10_3390_su15119024 crossref_primary_10_1016_j_tust_2024_106045 crossref_primary_10_31590_ejosat_1077867 crossref_primary_10_1108_ECAM_08_2024_1091 crossref_primary_10_3390_infrastructures7110148 crossref_primary_10_1063_5_0212652 crossref_primary_10_3389_feart_2022_857463 crossref_primary_10_3390_geotechnics5010005 crossref_primary_10_1007_s10462_025_11175_0 crossref_primary_10_1080_17499518_2021_1952612 crossref_primary_10_3390_land13101724 crossref_primary_10_1007_s11440_024_02472_z crossref_primary_10_1007_s10064_023_03226_z crossref_primary_10_1088_1755_1315_861_7_072036 crossref_primary_10_1016_j_tust_2023_105104 crossref_primary_10_3389_fbuil_2024_1495366 crossref_primary_10_1016_j_oregeorev_2023_105790 crossref_primary_10_1080_17499518_2022_2136717 crossref_primary_10_1016_j_physa_2022_128317 crossref_primary_10_1007_s11440_021_01326_2 crossref_primary_10_3390_mining5010020 crossref_primary_10_1016_j_conbuildmat_2023_132330 crossref_primary_10_1016_j_istruc_2024_107145 crossref_primary_10_1007_s10668_024_05595_1 crossref_primary_10_1007_s00603_023_03483_0 crossref_primary_10_3390_jmse12071099 crossref_primary_10_1080_19386362_2021_1968649 crossref_primary_10_1016_j_jrmge_2021_10_011 crossref_primary_10_1016_j_jrmge_2021_09_005 crossref_primary_10_1016_j_tust_2022_104843 crossref_primary_10_3390_app12199523 crossref_primary_10_1016_j_jrmge_2021_09_002 crossref_primary_10_1007_s12205_023_0355_y crossref_primary_10_1016_j_coldregions_2022_103589 crossref_primary_10_1177_87552930231215243 crossref_primary_10_3390_s21186188 crossref_primary_10_1016_j_jrmge_2021_09_004 crossref_primary_10_1007_s42107_023_00693_3 crossref_primary_10_3390_buildings14020450 crossref_primary_10_3390_ma15124250 crossref_primary_10_1080_10408347_2023_2298328 crossref_primary_10_1007_s11440_022_01651_0 crossref_primary_10_1016_j_aei_2023_102032 crossref_primary_10_1007_s11440_021_01299_2 crossref_primary_10_1007_s10462_022_10147_y crossref_primary_10_1177_03611981241257512 crossref_primary_10_1080_17499518_2023_2184479 crossref_primary_10_3390_w16233398 crossref_primary_10_3390_su152014708 crossref_primary_10_1016_j_jsv_2023_118075 crossref_primary_10_1016_j_engappai_2023_107663 crossref_primary_10_1016_j_seta_2022_102910 crossref_primary_10_1007_s12205_024_1432_6 crossref_primary_10_1007_s41062_022_00966_x crossref_primary_10_1016_j_bspc_2023_105311 crossref_primary_10_1080_17499518_2024_2443457 crossref_primary_10_1016_j_tust_2022_104728 crossref_primary_10_1007_s11440_022_01736_w crossref_primary_10_1109_ACCESS_2024_3424931 crossref_primary_10_1080_13467581_2024_2329358 crossref_primary_10_1016_j_buildenv_2023_110780 crossref_primary_10_1016_j_trgeo_2022_100783 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_3390_ma15249029 crossref_primary_10_3390_sym15112093 crossref_primary_10_1007_s11440_021_01358_8 crossref_primary_10_1080_19648189_2023_2205914 crossref_primary_10_1016_j_jrmge_2024_05_005 crossref_primary_10_1115_1_4067089 crossref_primary_10_1016_j_sasc_2024_200082 crossref_primary_10_3390_a15110428 crossref_primary_10_1002_nag_3372 crossref_primary_10_1007_s11440_023_02030_z crossref_primary_10_1007_s10064_023_03074_x crossref_primary_10_1007_s10706_024_03067_x crossref_primary_10_3389_fmats_2021_798726 crossref_primary_10_1016_j_enggeo_2022_106899 crossref_primary_10_1007_s10064_024_03687_w crossref_primary_10_1007_s11831_025_10244_5 crossref_primary_10_1007_s00603_023_03704_6 crossref_primary_10_1007_s11440_022_01783_3 crossref_primary_10_1007_s40098_024_00894_w crossref_primary_10_1142_S1363919623400066 crossref_primary_10_3389_feart_2024_1340437 crossref_primary_10_1007_s12517_023_11268_6 crossref_primary_10_1007_s10706_024_02991_2 crossref_primary_10_1016_j_tust_2022_104830 crossref_primary_10_1016_j_soildyn_2024_108619 crossref_primary_10_1007_s11831_024_10154_y crossref_primary_10_1016_j_autcon_2022_104488 crossref_primary_10_1007_s11771_023_5254_3 crossref_primary_10_1139_cgj_2024_0139 crossref_primary_10_1016_j_apor_2023_103597 crossref_primary_10_1038_s41598_022_17429_z crossref_primary_10_3390_su15010784 crossref_primary_10_1007_s10462_021_10065_5 crossref_primary_10_1007_s12145_024_01435_y crossref_primary_10_1016_j_heliyon_2023_e14465 crossref_primary_10_3390_su151713277 crossref_primary_10_1007_s11440_022_01685_4 crossref_primary_10_1007_s10064_022_02836_3 crossref_primary_10_1016_j_conbuildmat_2022_129503 crossref_primary_10_1016_j_cscm_2023_e02130 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_1007_s11440_021_01319_1 crossref_primary_10_1016_j_trgeo_2024_101419 crossref_primary_10_1016_j_autcon_2024_105819 crossref_primary_10_1007_s10706_023_02687_z crossref_primary_10_3390_app14104223 crossref_primary_10_1515_jmbm_2022_0309 crossref_primary_10_1016_j_jrmge_2024_03_017 crossref_primary_10_1080_19424396_2023_2199910 crossref_primary_10_3233_IDA_220449 crossref_primary_10_1007_s11440_022_01461_4 crossref_primary_10_1016_j_cscm_2023_e02800 crossref_primary_10_3390_ma15082864 crossref_primary_10_1016_j_aei_2025_103180 crossref_primary_10_1016_j_undsp_2022_01_005 crossref_primary_10_1007_s10462_024_10836_w crossref_primary_10_1007_s40808_022_01556_7 crossref_primary_10_1016_j_jrmge_2021_05_010 crossref_primary_10_3799_dqkx_2022_144 crossref_primary_10_1007_s11440_022_01571_z crossref_primary_10_1080_17499518_2023_2182890 crossref_primary_10_1007_s11440_021_01240_7 crossref_primary_10_1007_s11440_021_01264_z crossref_primary_10_1016_j_jrmge_2022_03_002 crossref_primary_10_1007_s11440_022_01495_8 crossref_primary_10_1016_j_jmrt_2022_02_123 crossref_primary_10_4018_IJGEE_298988 crossref_primary_10_3390_app132111966 crossref_primary_10_1007_s12393_024_09385_3 crossref_primary_10_1007_s43503_024_00020_y crossref_primary_10_1016_j_ghm_2024_06_001 crossref_primary_10_3390_su152216125 crossref_primary_10_3390_buildings12111812 crossref_primary_10_1016_j_jrmge_2021_08_005 crossref_primary_10_1016_j_compgeo_2022_104733 crossref_primary_10_1016_j_trgeo_2025_101492 crossref_primary_10_1007_s11440_023_01874_9 crossref_primary_10_1007_s11440_023_01813_8 crossref_primary_10_3390_app13084897 crossref_primary_10_1016_j_conbuildmat_2023_131887 crossref_primary_10_1080_10589759_2024_2343943 crossref_primary_10_1016_j_jrmge_2021_08_011 crossref_primary_10_1016_j_coastaleng_2023_104291 crossref_primary_10_1007_s11709_022_0908_z crossref_primary_10_1007_s00500_023_08053_8 crossref_primary_10_1016_j_compgeo_2025_107177 crossref_primary_10_1016_j_mtcomm_2024_108471 crossref_primary_10_1007_s11440_021_01383_7 crossref_primary_10_1016_j_conbuildmat_2022_127650 crossref_primary_10_1155_2024_3599911 crossref_primary_10_1038_s41597_024_03249_5 crossref_primary_10_1016_j_asoc_2023_110066 crossref_primary_10_3390_app14198695 crossref_primary_10_1016_j_compgeo_2022_105040 crossref_primary_10_1088_2631_8695_adad37 crossref_primary_10_1007_s11440_021_01360_0 crossref_primary_10_1007_s42461_023_00805_2 crossref_primary_10_7717_peerj_cs_2052 crossref_primary_10_1080_14680629_2022_2117063 crossref_primary_10_1002_gj_4936 crossref_primary_10_1016_j_mtcomm_2022_104615 crossref_primary_10_1021_acsomega_3c08169 crossref_primary_10_1016_j_jobe_2022_104847 crossref_primary_10_3390_su15129738 crossref_primary_10_1007_s10064_023_03516_6 crossref_primary_10_3390_electronics13030649 crossref_primary_10_1080_17499518_2023_2222383 crossref_primary_10_3390_buildings12030350 crossref_primary_10_1007_s10346_023_02166_9 crossref_primary_10_1016_j_jrmge_2022_04_012 crossref_primary_10_1016_j_jrmge_2021_07_007 crossref_primary_10_1016_j_jrmge_2023_02_025 crossref_primary_10_1016_j_jrmge_2021_12_011 crossref_primary_10_1007_s40515_025_00562_3 crossref_primary_10_1016_j_tust_2022_104453 crossref_primary_10_1109_ACCESS_2024_3385340 crossref_primary_10_2139_ssrn_4681718 crossref_primary_10_1007_s10706_024_02863_9 crossref_primary_10_1016_j_autcon_2021_103827 crossref_primary_10_1007_s40515_024_00411_9 crossref_primary_10_1016_j_compgeo_2023_105844 crossref_primary_10_1016_j_gsf_2021_101296 crossref_primary_10_1016_j_jrmge_2023_06_015 crossref_primary_10_1016_j_jrmge_2021_06_014 crossref_primary_10_1007_s40891_024_00533_7 crossref_primary_10_1016_j_jrmge_2021_06_012 crossref_primary_10_1016_j_tust_2023_105159 crossref_primary_10_1016_j_taml_2025_100578 crossref_primary_10_1007_s00603_022_03046_9 crossref_primary_10_1016_j_cageo_2024_105638 crossref_primary_10_1007_s10706_022_02351_y crossref_primary_10_1007_s11709_024_1085_z crossref_primary_10_1002_gj_5007 crossref_primary_10_1016_j_jrmge_2021_07_011 crossref_primary_10_1016_j_jrmge_2021_07_012 crossref_primary_10_1016_j_jrmge_2021_07_013 crossref_primary_10_1016_j_trgeo_2022_100827 crossref_primary_10_1007_s11440_022_01749_5 crossref_primary_10_1007_s12517_021_08319_1 crossref_primary_10_3390_en16041581 crossref_primary_10_1109_TGRS_2024_3443178 crossref_primary_10_1007_s11440_021_01257_y crossref_primary_10_3390_app12031635 crossref_primary_10_1080_17499518_2023_2278136 crossref_primary_10_1080_17499518_2022_2083178 crossref_primary_10_1080_17499518_2023_2172188 crossref_primary_10_3390_app112110264 crossref_primary_10_1016_j_gsf_2023_101645 crossref_primary_10_1007_s13369_022_07091_y crossref_primary_10_1139_cgj_2022_0696 crossref_primary_10_1002_gj_4605 crossref_primary_10_1007_s11771_024_5681_9 crossref_primary_10_1016_j_isprsjprs_2023_12_011 crossref_primary_10_1007_s40515_024_00396_5 crossref_primary_10_1016_j_engfailanal_2024_107998 crossref_primary_10_1016_j_autcon_2024_105894 crossref_primary_10_3390_rs16091535 crossref_primary_10_1038_s41598_023_29292_7 crossref_primary_10_3390_app132413170 crossref_primary_10_1061_IJGNAI_GMENG_8644 crossref_primary_10_3390_buildings14103279 crossref_primary_10_1080_17499518_2022_2087884 crossref_primary_10_1080_17538947_2024_2409337 crossref_primary_10_3390_electronics13153030 crossref_primary_10_1016_j_tust_2022_104428 crossref_primary_10_1016_j_engappai_2023_105990 crossref_primary_10_1016_j_conbuildmat_2024_136075 crossref_primary_10_1007_s11440_022_01450_7 crossref_primary_10_1109_TPAMI_2023_3307688 |
Cites_doi | 10.1016/j.tust.2004.02.128 10.3390/s19010204 10.1007/s00521-016-2345-1 10.3390/rs11172046 10.3390/sym10010011 10.1109/5.726791 10.1016/j.ymssp.2020.107061 10.1007/s12517-017-3285-5 10.1007/s12205-018-2636-4 10.1016/j.tust.2016.12.004 10.3390/math7080755 10.1007/s10462-020-09835-4 10.3390/s18030821 10.1016/j.autcon.2016.03.015 10.1016/j.ijrmms.2018.08.003 10.1109/CVPR.2018.00702 10.1016/j.cageo.2020.104470 10.1061/(ASCE)CP.1943-5487.0000731 10.1061/(ASCE)0887-3801(2002)16:1(59) 10.1007/s10064-016-0937-8 10.1109/JSTARS.2020.2980895 10.3390/s18124436 10.1016/0148-9062(92)91044-6 10.1016/S0045-7949(98)00126-6 10.1016/j.gsf.2020.02.011 10.1016/j.gsf.2019.12.003 10.1016/S1452-3981(23)15062-0 10.1179/1939787914Y.0000000058 10.1109/72.554195 10.1109/ACCESS.2019.2961375 10.1016/j.tust.2005.02.001 10.1109/TPAMI.2017.2737631 10.1016/j.neunet.2018.12.006 10.3390/app9173484 10.3997/2214-4609.201700945 10.1007/s10462-020-09838-1 10.1155/2018/2837571 10.1016/j.gsf.2014.10.003 10.1109/CVPR.2018.00986 10.3390/app8122493 10.3390/app7010110 10.1109/ICMA.2017.8015785 10.1016/j.tust.2020.103593 10.1109/ACCESS.2020.3029562 10.1146/annurev-bioeng-071516-044442 10.1007/s00366-017-0545-7 10.1103/PhysRevE.101.023305 10.1109/ACCESS.2019.2916330 10.1007/s10462-020-09825-6 10.1061/(ASCE)CP.1943-5487.0000796 10.1109/IJCNN.2019.8852164 10.1016/j.undsp.2019.12.003 10.1080/17499518.2019.1674340 10.1109/ACCESS.2020.3015486 10.1109/CVPR.2019.00453 10.1016/j.compgeo.2009.11.005 10.1190/segam2016-13972613.1 10.1186/s40703-017-0067-6 10.1016/j.tust.2017.01.009 10.1007/s10596-020-09978-x 10.1109/CVPR.2018.00916 10.1088/1742-6596/364/1/012114 10.3208/sandf.48.141 10.1007/s00521-014-1690-1 10.1016/S0266-352X(03)00058-2 10.1016/j.petrol.2019.02.037 10.1109/ICCVW.2017.254 10.1109/ACCESS.2019.2917756 10.1016/j.media.2016.05.004 10.3390/ijgi7040158 10.1016/j.cageo.2019.104357 10.1155/2018/6245728 10.1109/YAC.2016.7804935 10.1049/ip-vis:19941301 10.1016/j.autcon.2017.11.002 10.21437/Interspeech.2014-443 10.1139/T07-052 10.1016/j.advwatres.2017.09.029 10.1029/2018GL078202 10.1016/j.autcon.2019.102840 10.1007/s12182-019-0328-4 10.1016/j.catena.2019.104426 10.3390/app9173553 10.1007/s12205-014-0316-6 10.1109/CVPR.2018.00593 10.1007/s11242-018-1039-9 10.1016/j.jenvman.2015.12.012 10.1016/j.gsf.2014.10.002 10.3390/s17112443 10.1162/neco.1997.9.8.1735 10.3390/s20051425 10.1016/j.undsp.2020.01.003 10.5402/2012/678329 10.1007/s00603-018-1513-2 10.1109/ACCESS.2019.2912200 10.1109/ACCESS.2020.2977880 10.1109/ACCESS.2020.2981561 10.2118/191906-MS 10.1177/0954408916659310 10.1155/2012/235929 10.1016/S1452-3981(23)18189-2 10.1061/(ASCE)CF.1943-5509.0000947 10.1016/j.gsf.2020.03.003 10.4043/28015-MS 10.1007/s00024-019-02152-0 10.1016/j.tust.2019.103156 10.1016/S1452-3981(23)15063-2 10.1016/j.tust.2017.07.013 10.1016/j.procs.2016.07.144 10.1016/j.cageo.2020.104527 10.1561/2200000006 10.1109/LGRS.2019.2918641 10.1016/j.gsf.2015.07.003 10.1109/CVPR.2018.00233 10.1109/LGRS.2018.2889307 10.1109/CVPR.2018.00963 10.1103/PhysRevE.96.043309 10.1016/j.neucom.2017.06.023 10.1007/s10489-014-0576-3 10.1007/s00366-015-0400-7 10.1109/ACCESS.2018.2870203 10.1016/j.tust.2018.11.046 10.3390/w10101389 10.1016/j.ins.2018.07.049 10.1109/CVPR.2017.19 10.1109/DICTA.2016.7797053 10.3390/su9060979 10.3390/rs12050752 10.1109/ACCESS.2019.2912419 10.21437/Interspeech.2010-343 10.1080/01431161.2019.1672904 10.1007/s00521-011-0734-z 10.1016/j.ijrmms.2019.104084 10.1109/ACCESS.2019.2962496 10.1016/j.enggeo.2018.09.018 10.1016/j.autcon.2018.11.013 10.1016/j.cageo.2019.104314 10.1007/s11242-014-0313-8 10.3934/dcdss.2019045 10.1162/neco.1989.1.2.270 10.1007/s10346-018-01127-x 10.1145/3065386 10.1109/ACCESS.2020.2995592 10.1007/s00521-017-2990-z 10.1016/j.petrol.2018.11.023 10.1007/s10462-018-09679-z 10.3390/s19183914 10.1117/12.2266226 10.1162/neco.2006.18.7.1527 10.1109/IGARSS.2017.8127091 10.1016/j.eswa.2017.04.053 10.1016/j.tust.2018.07.006 10.1111/mice.12313 10.1016/j.neunet.2014.09.003 10.1016/j.cageo.2017.10.013 10.1109/ACCESS.2018.2839754 10.1007/s00521-013-1434-7 10.1016/0031-3203(82)90024-3 10.1007/s10064-020-01730-0 10.1007/s12517-017-3167-x 10.1016/j.media.2017.07.005 10.1061/(ASCE)CF.1943-5509.0001058 10.1080/17499518.2019.1700423 10.1109/72.279181 10.3390/s19132895 10.1007/s10462-019-09744-1 10.1016/0893-6080(89)90020-8 10.5194/nhess-12-2719-2012 10.1016/j.soildyn.2006.12.009 10.1016/j.compgeo.2007.06.006 10.1109/JSTARS.2019.2951725 10.1109/ACCESS.2019.2959820 10.1016/j.cie.2018.02.028 10.1016/j.asoc.2018.05.018 10.1007/s00521-012-1254-1 10.1007/s10346-017-0941-5 10.1109/ACCESS.2019.2931074 10.1061/(ASCE)CP.1943-5487.0000682 10.1109/TNNLS.2018.2876865 10.3390/ma13061397 10.4324/9780203451519 10.1109/LGRS.2019.2913593 10.1109/TII.2019.2902129 10.1016/j.aei.2005.01.004 10.1061/(ASCE)CF.1943-5509.0000958 10.1007/978-94-015-9341-0_15 10.1109/IJCNN.2011.6033589 10.1109/ACCESS.2020.2984515 10.1111/mice.12367 10.1016/j.compgeo.2009.04.003 10.1016/j.gsf.2020.03.007 10.1016/j.soildyn.2013.05.002 10.1061/(ASCE)CP.1943-5487.0000775 10.1007/s00521-012-1334-2 10.1109/ICCV.2017.304 10.1016/S0266-352X(00)00033-1 10.1061/(ASCE)CP.1943-5487.0000700 10.1007/s00521-011-0735-y 10.1007/s10489-018-01396-y 10.3390/rs11020196 10.1016/j.autcon.2019.102928 10.1016/j.catena.2020.104458 10.1016/j.sjbs.2017.11.022 10.1016/S0167-9236(96)00070-X 10.1016/j.cageo.2019.104312 10.1016/j.petrol.2019.106742 10.1109/ICDAR.2003.1227801 10.1016/j.tust.2018.04.007 10.3390/rs9121220 10.1007/s10346-020-01453-z 10.1016/B978-012161964-0/50007-8 10.1016/S0031-3203(01)00178-9 10.1109/ACCESS.2020.2976910 10.1016/j.soildyn.2007.03.007 10.1061/(ASCE)CF.1943-5509.0000557 10.1007/s12205-011-1154-4 10.1139/t95-103 10.1007/s00521-019-04109-9 10.1016/j.tust.2019.103094 10.1109/ACCESS.2020.3022786 10.1155/2020/8685724 10.1016/j.enggeo.2019.105307 10.1016/j.enggeo.2015.01.009 10.1016/j.neucom.2019.12.040 10.1007/978-3-642-05253-8_40 10.1016/S0893-6080(01)00111-3 10.1111/mice.12440 10.1016/j.tust.2018.04.002 10.1016/j.gsf.2019.10.004 10.1007/s11704-019-8208-z 10.1109/CVPR.2016.90 10.1109/ICCV.2015.123 10.1016/j.compgeo.2012.09.016 10.1016/j.enggeo.2013.12.003 10.1016/j.neunet.2012.02.023 10.1109/CVPR.2015.7299170 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021 COPYRIGHT 2021 Springer Copyright Springer Nature B.V. Dec 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Copyright Springer Nature B.V. Dec 2021 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
DOI | 10.1007/s10462-021-09967-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Engineering |
EISSN | 1573-7462 |
EndPage | 5673 |
ExternalDocumentID | A718212747 10_1007_s10462_021_09967_1 |
GrantInformation_xml | – fundername: Key Technologies Research and Development Program grantid: 2019YFC1509605 funderid: http://dx.doi.org/10.13039/501100012165 – fundername: Chongqing Construction Science and Technology Plan Project grantid: No. 2019-0045 – fundername: Program of Distinguished Young Scholars, Natural Science Foundation of Chongqing, China grantid: cstc2020jcyj-jq0087 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PRQQA Q9U |
ID | FETCH-LOGICAL-c424t-1286e9a6c2839c4780c6d87cfa998bc88de52b8c7a3b051a07f7b964a80502b13 |
IEDL.DBID | BENPR |
ISSN | 0269-2821 |
IngestDate | Wed Aug 13 07:52:32 EDT 2025 Tue Jun 10 20:08:24 EDT 2025 Tue Jul 01 01:23:25 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 Fri Feb 21 02:47:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deep learning Geotechnical engineering Big data Neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-1286e9a6c2839c4780c6d87cfa998bc88de52b8c7a3b051a07f7b964a80502b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2588185346 |
PQPubID | 36790 |
PageCount | 41 |
ParticipantIDs | proquest_journals_2588185346 gale_infotracacademiconefile_A718212747 crossref_primary_10_1007_s10462_021_09967_1 crossref_citationtrail_10_1007_s10462_021_09967_1 springer_journals_10_1007_s10462_021_09967_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Science and Engineering Journal |
PublicationTitle | The Artificial intelligence review |
PublicationTitleAbbrev | Artif Intell Rev |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inform20051914353 SongQReal-time tunnel crack analysis system via deep learningIEEE Access201976418664197 FerreiraAGiraldiGConvolutional Neural Network approaches to granite tiles classificationExpert Syst Appl201784111 WangYTengQHeXFengJZhangTCT-image of rock samples super resolution using 3D convolutional neural networkComput Geosci2019133104314 CruzMSantosJMCruzNUsing neural networks and support vector regression to relate marchetti dilatometer test parameters and maximum shear modulusAppl Intell2015421135146 Mahendran S, Ali H, Vidal R (2017) 3d pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 2174–2182 QuZMeiJLiuLZhouD-YCrack detection of concrete pavement with cross-entropy loss function and improved VGG16 network modelIEEE Access202085456454573 Guirado E, Tabik S, Alcaraz-Segura D, Cabello J, Herrera F (2017) Deep-learning convolutional neural networks for scattered shrub detection with google earth imagery. arXiv preprint https://arxiv.org/abs/1706.00917 ShimSKimJChoG-CLeeS-WMultiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structuresIEEE Access20208170939170950 BagińskaMSrokoszPEThe optimal ANN Model for predicting bearing capacity of shallow foundations trained on scarce dataKSCE J Civil Eng2019231130137 Shaheen F, Verma B, Asafuddoula M (2016) Impact of automatic feature extraction in deep learning architecture. In: 2016 International conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–8 MollahasaniAAlaviAHGandomiAHRashedANonlinear neural-based modeling of soil cohesion interceptKSCE J Civ Eng2011155831840 LiCWangYZhangXGaoHYangYWangJDeep belief network for spectral–spatial classification of hyperspectral remote sensor dataSensors2019191204 RanXXueLZhangYLiuZSangXHeJRock classification from field image patches analyzed using a deep convolutional neural networkMathematics201978755 ZhangWGohATCMultivariate adaptive regression splines for analysis of geotechnical engineering systemsComput Geotech2013488295 Sargano AB, Angelov P, Habib Z (2017) A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. applied sciences 7(1):110 LiJLiPGuoDLiXChenZAdvanced prediction of tunnel boring machine performance based on big dataGeosci Front2020121331338 Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5325–5334 ShahinMAJaksaMBMaierHRArtificial neural network applications in geotechnical engineering Australian geomechanics20013614962 Brock A, Donahue J, Simonyan K (2018) Large scale gan training for high fidelity natural image synthesis. arXiv preprint https://arxiv.org/abs/1809.11096 Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2794–2802 RankovićVNovakovićAGrujovićNDivacDMilivojevićNPredicting piezometric water level in dams via artificial neural networksNeural Comput Appl201424511151121 LaryDJAlaviAHGandomiAHWalkerALMachine learning in geosciences and remote sensingGeosci Front201671310 ShresthaAMahmoodAReview of deep learning algorithms and architecturesIEEE Access201975304053065 van NatijneALLindenberghRCBogaardTAMachine learning: new potential for local and regional deep-seated landslide nowcastingSensors20202051425 LiJZhaoFWangXCaoFHanXThe underground explosion point measurement method based on high-precision location of energy focusIEEE Access20208165989166002 KangBChoeJUncertainty quantification of channel reservoirs assisted by cluster analysis and deep convolutional generative adversarial networksJ Petrol Sci Eng2020187106742 BangSParkSKimHKimHEncoder-decoder network for pixel-level road crack detection in black-box imagesComput-Aided Civil Infrastruct Eng2019348713727 NhuV-HEffectiveness assessment of keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical areaCATENA2020188104458 XiePZhouAChaIBThe Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced LandslidesIEEE Access201975430554311 Goodfellow IJ et al. (2014) Generative Adversarial Nets. In: Advances in neural information processing systems pp. 2672–2680 NelsonEJChaoKCNelsonJDOvertonDDLessons Learned from Foundation and Slab Failures on Expansive SoilsJ Perform Construct Facil2017313D4016007 WongBKBodnovichTASelviYNeural network applications in business: A review and analysis of the literature (1988–1995)Decis Support Syst1997194301320 Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv preprint https://arxiv.org/abs/1704.06857 Mabbutt S, Picton P, Shaw P, Black S Review of Artificial Neural Networks (ANN) applied to corrosion monitoring. In: Journal of Physics: Conference Series, IOP Publishing, Vol. 364, No. 1, p. 012114 LinYZhouKLiJApplication of cloud model in rock burst prediction and performance comparison with three machine learnings algorithmsIEEE Access201863095830968 NaghadehiMZThewesMLavasanAAFace stability analysis of mechanized shield tunneling: An objective systems approach to the problemEng Geol2019262105307 Gandomi AH, Alavi AH (2012b) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Computing and Applications 21(1):171–187 Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4401–4410 FukushimaKMiyakeSNeocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in positionPattern Recogn1982156455469 HintonGEOsinderoSTehY-WA fast learning algorithm for deep belief netsNeural Comput20061871527155422244851106.68094 SupreethaBShenoyNNayakPLion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District2020IndiaApplied Computational Intelligence and Soft Computing10.1155/2020/8685724 BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw199452157166 LazarevskaMKnezevicMCvetkovskaMTrombeva-GavriloskaAApplication of artificial neural networks in civil engineeringTehnički vjesnik201421613531359 Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv preprint https://arxiv.org/abs/1611.02200 MosserLDubruleOBluntMJReconstruction of three-dimensional porous media using generative adversarial neural networksPhys Rev E2017964043309 ImamverdiyevYSukhostatLLithological facies classification using deep convolutional neural networkJ Petrol Sci Eng2019174216228 QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill Construction and BuildingMaterials2018159473478 HeMZhangZRenJHuanJLiGChenYLiNDeep convolutional neural network for fast determination of the rock strength parameters using drilling dataInt J Rock Mech Min Sci2019123104084 LuoC-LShaHLingC-LLiJ-YIntelligent Detection for tunnel shotcrete spray using deep Learning and LiDARIEEE Access2020817551766 Mikolov T, Karafiát M, Burget L, Černocký J, Khudanpur S (2010) Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association, pp 1045–1048 NassrAEsmaeili-FalakMKatebiHJavadiAA new approach to modeling the behavior of frozen soilsEng Geol20182468290 Zhang Z, Yang L, Zheng Y (2018c) Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern Recognition, pp 9242–9251 LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachIEEE Trans Intell Transp Syst2014162865873 ZhangWZhangRWangWZhangFGohATCA Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in claysTunn Undergr Space Technol201984461471 DingLFangWLuoHLovePEZhongBOuyangXA deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memoryAutomat construct201886118124 GaoWWuHSiddiquiMKBaigAQStudy of biological networks using graph theorySaudi J biol sci201825612121219 MosserLDubruleOBluntMJStochastic reconstruction of an oolitic limestone by generative adversarial networksTransp Porous Media2018125181103 MoayediHHuatBBMoayediFAsadiAParsaieAEffect of sodium silicate on unconfined compressive strength of soft clay ElectronicJ Geotech Eng201116289295 LeeGTaiY-WKimJELD-net: An efficient deep learning architecture for accurate saliency detectionIEEE Trans Pattern Anal Mach Intell201740715991610 QinXLiuLWangPWangMXinJMicroscopic Parameter extraction and corresponding strength prediction of cemented paste backfill at different curing timesAdv Civ Eng201810.1155/2018/2837571 AdamsMDKanaroglouPSMapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network modelsJ Environ Manage2016168133141 ValsecchiADamasSTubillejaCArechaldeJStochastic reconstruction of 3D porous media from 2D images using generative adversarial networksNeurocomputing2020399227336 ZhangYWangGLiMHanSAutomated classification analysis of geological structures based on images data and deep learning modelAppl Sci-Basel20188122493 JanJCHungSLChiSYChernJCNeural network forecast model in deep excavationJ Comput J Ninić (9967_CR168) 2017; 63 Y LeCun (9967_CR117) 1998; 86 H Moayedi (9967_CR156) 2020; 32 YM Najjar (9967_CR162) 2007; 34 Y Li (9967_CR128) 2020; 8 L Shi (9967_CR195) 2018; 6 B Yang (9967_CR227) 2019; 16 ATC Goh (9967_CR73) 1995; 32 W Zhang (9967_CR234) 2016; 7 X Qin (9967_CR178) 2018 9967_CR198 A Zhang (9967_CR241) 2018; 32 G Litjens (9967_CR134) 2017; 42 S Shim (9967_CR196) 2020; 8 9967_CR190 M He (9967_CR89) 2019; 123 GE Hinton (9967_CR90) 2006; 18 A Benardos (9967_CR17) 2004; 19 B Gao (9967_CR64) 2020 M Egmont-Petersen (9967_CR49) 2002; 35 E Uncuoglu (9967_CR207) 2008; 48 PJ Lisboa (9967_CR133) 2002; 15 S Zhao (9967_CR255) 2020; 95 Y Lu (9967_CR138) 2017; 267 9967_CR189 ATC Goh (9967_CR72) 2014; 170 MD Adams (9967_CR2) 2016; 168 9967_CR187 P Xie (9967_CR221) 2019; 7 W Gao (9967_CR60) 2018; 25 M Cruz (9967_CR39) 2015; 42 9967_CR180 A Khan (9967_CR109) 2020; 53 W Zhang (9967_CR245) 2019; 84 G Singh (9967_CR199) 2017; 28 A Mollahasani (9967_CR157) 2011; 15 W Zhang (9967_CR252) 2020 R Zhang (9967_CR249) 2020; 12 L Mosser (9967_CR159) 2017; 96 X Qin (9967_CR177) 2018 A Asadi (9967_CR8) 2011; 6 9967_CR18 N Janssens (9967_CR100) 2020; 13 DJ Lary (9967_CR114) 2016; 7 P Saikia (9967_CR184) 2020; 135 9967_CR15 9967_CR14 Y Erzin (9967_CR51) 2007; 44 L Mosser (9967_CR160) 2018; 125 Y Bengio (9967_CR19) 1994; 5 9967_CR172 9967_CR171 RJ Williams (9967_CR217) 1989; 1 9967_CR170 Y Wu (9967_CR219) 2019; 93 Y Lv (9967_CR141) 2014; 16 A Chakraborty (9967_CR27) 2017; 10 C Cao (9967_CR26) 2018; 77 SJ Lee (9967_CR120) 2003; 30 M Ayyıldız (9967_CR9) 2017; 231 P Jiao (9967_CR101) 2020; 11 A Valsecchi (9967_CR209) 2020; 399 Y Zhang (9967_CR242) 2018; 8 W Zhang (9967_CR239) 2017; 64 A Da'u (9967_CR42) 2020; 53 Y Zhou (9967_CR257) 2017; 31 C Qi (9967_CR175) 2018; 118 MA Shahin (9967_CR192) 2016; 7 C Zhou (9967_CR258) 2019; 9 H Lu (9967_CR139) 2020; 12 9967_CR35 M Mosallanezhad (9967_CR158) 2017; 10 A Calabrese (9967_CR23) 2013; 52 A Ferreira (9967_CR55) 2017; 84 9967_CR31 Z Wei (9967_CR216) 2019; 176 H Kim (9967_CR111) 2018; 32 Y Zhou (9967_CR259) 2019; 33 Z Qu (9967_CR179) 2020; 8 J Li (9967_CR129) 2020; 8 FP Nejad (9967_CR164) 2009; 36 SB Ikizler (9967_CR97) 2014; 24 H Moayedi (9967_CR154) 2019; 31 M Bagińska (9967_CR11) 2019; 23 Z Chen (9967_CR30) 2018; 18 RP Chen (9967_CR29) 2015; 29 Y Tan (9967_CR205) 2017; 31 9967_CR21 9967_CR24 Q Song (9967_CR200) 2019; 7 G Van Houdt (9967_CR210) 2020; 53 9967_CR28 Z Zhang (9967_CR235) 2014; 25 A Asadi (9967_CR7) 2011; 6 A Garg (9967_CR68) 2014; 103 EJ Nelson (9967_CR165) 2017; 31 W Zhang (9967_CR236) 2015; 188 C Dong (9967_CR45) 2017; 9 P Gentine (9967_CR69) 2018; 45 S Bang (9967_CR13) 2019; 34 9967_CR57 W Zhang (9967_CR233) 2013; 48 X Gao (9967_CR62) 2019; 98 9967_CR53 9967_CR52 YMA Hashash (9967_CR84) 2010; 37 Z-Q Zhao (9967_CR253) 2019; 30 D-M Cui (9967_CR41) 2017; 17 9967_CR58 J Zhao (9967_CR254) 2019; 7 D Shen (9967_CR194) 2017; 19 L Azevedo (9967_CR10) 2020; 24 9967_CR43 S Han (9967_CR83) 2019; 9 9967_CR40 MA Shahin (9967_CR191) 2015; 9 L Xiao (9967_CR220) 2018; 18 Y Tan (9967_CR204) 2017; 31 G Lee (9967_CR121) 2017; 40 Y Zhang (9967_CR238) 2017 C Qi (9967_CR176) 2018; 159 S Xu (9967_CR223) 2018; 111 Y Bengio (9967_CR20) 2007; 19 ATC Goh (9967_CR75) 2018; 77 K Hornik (9967_CR92) 1989; 2 9967_CR77 S Karimpouli (9967_CR105) 2019; 111 9967_CR76 9967_CR79 9967_CR119 T Salimans (9967_CR185) 2016; 29 9967_CR118 W Zhang (9967_CR244) 2019; 11 9967_CR230 AL van Natijne (9967_CR211) 2020; 20 S Du (9967_CR48) 2020; 8 E Elbeltagi (9967_CR50) 2005; 19 E Protopapadakis (9967_CR173) 2019; 49 B Kang (9967_CR102) 2020; 187 H Moayedi (9967_CR153) 2018; 34 M Rahman (9967_CR181) 2001; 28 9967_CR67 W Gao (9967_CR61) 2019; 12 M Lazarevska (9967_CR116) 2014; 21 9967_CR63 O Ghorbanzadeh (9967_CR70) 2019; 11 Y Zhang (9967_CR246) 2019; 19 V-H Nhu (9967_CR167) 2020; 188 9967_CR108 9967_CR107 E Laloy (9967_CR113) 2017; 110 9967_CR226 9967_CR222 W Zhang (9967_CR251) 2020; 12 J-M Kang (9967_CR103) 2019; 17 MA Shahin (9967_CR193) 2001; 36 A Krizhevsky (9967_CR112) 2017; 60 G Cheng (9967_CR34) 2017; 887 CG Chua (9967_CR37) 2005; 20 C-L Luo (9967_CR140) 2020; 8 9967_CR94 9967_CR96 X Yuan (9967_CR231) 2019; 16 C Qi (9967_CR174) 2018; 51 O Ghorbanzadeh (9967_CR71) 2019; 11 J Li (9967_CR127) 2019; 7 9967_CR215 Y Dong (9967_CR46) 2019; 7 C Li (9967_CR126) 2019; 19 9967_CR214 9967_CR212 B Karlik (9967_CR106) 1998; 69 B Supreetha (9967_CR202) 2020 W Gao (9967_CR66) 2020; 8 Y Liu (9967_CR135) 2016; 91 9967_CR80 B Liu (9967_CR137) 2018; 10 DT Bui (9967_CR22) 2020; 188 J-S Chou (9967_CR36) 2016; 68 9967_CR88 9967_CR87 Y Li (9967_CR124) 2012; 12 J Li (9967_CR130) 2020; 12 V Ranković (9967_CR183) 2014; 24 A Salsani (9967_CR186) 2014; 24 BK Wong (9967_CR218) 1997; 19 9967_CR86 A Nassr (9967_CR163) 2018; 246 DA Oliveira (9967_CR169) 2019; 16 Y Zhang (9967_CR237) 2017; 31 9967_CR203 O Kapliński (9967_CR104) 2016; 8 9967_CR201 Y Mao (9967_CR149) 2019; 19 SW Canchumuni (9967_CR25) 2019; 177 JE Ball (9967_CR12) 2017; 11 H Thirugnanam (9967_CR206) 2020; 17 H Chen (9967_CR33) 2020; 101 B Gordan (9967_CR78) 2016; 32 M Baziar (9967_CR16) 2007; 27 X Ran (9967_CR182) 2019; 7 A Asadi (9967_CR6) 2011; 6 T Lei (9967_CR122) 2019; 16 H Moayedi (9967_CR155) 2011; 16 A Shrestha (9967_CR197) 2019; 7 Y Huang (9967_CR95) 2019; 121 S-H Kim (9967_CR110) 2014; 18 Y Lin (9967_CR132) 2018; 6 9967_CR152 S Hochreiter (9967_CR91) 1997; 9 9967_CR151 9967_CR150 JC Jan (9967_CR99) 2002; 16 M-Y Gao (9967_CR65) 2020; 8 L Yz (9967_CR232) 2017; 32 D CireşAn (9967_CR38) 2012; 32 9967_CR148 9967_CR147 9967_CR146 9967_CR145 9967_CR144 9967_CR142 C Zhong (9967_CR256) 2020; 41 X Dong (9967_CR47) 2020; 14 Y Wang (9967_CR213) 2019; 133 C Zhou (9967_CR260) 2019; 105 M Havaei (9967_CR85) 2017; 35 S Lawrence (9967_CR115) 1997; 8 D Xue (9967_CR225) 2018; 111 ATC Goh (9967_CR74) 2017; 70 K Fukushima (9967_CR56) 1982; 15 MZ Naghadehi (9967_CR161) 2019; 262 9967_CR136 G Nguyen (9967_CR166) 2019; 52 P Zhang (9967_CR250) 2020; 106 L Ding (9967_CR44) 2018; 86 W Gao (9967_CR59) 2018; 467 I Ahmad (9967_CR3) 2007; 27 S Han (9967_CR82) 2019; 133 Y Xue (9967_CR224) 2018; 33 M Fatehnia (9967_CR54) 2018; 9 S Han (9967_CR81) 2018; 7 H-w Huang (9967_CR93) 2018; 77 C Ye (9967_CR229) 2019; 12 H Chen (9967_CR32) 2019; 7 R Vaillant (9967_CR208) 1994; 141 J Ma (9967_CR143) 2018; 15 C Liang (9967_CR131) 2018; 10 T-F Zhang (9967_CR247) 2019; 16 D Yang (9967_CR228) 2020; 8 X Li (9967_CR123) 2019; 107 Y Imamverdiyev (9967_CR98) 2019; 174 J Schmidhuber (9967_CR188) 2015; 61 9967_CR248 9967_CR5 9967_CR4 9967_CR125 9967_CR1 9967_CR243 9967_CR240 |
References_xml | – reference: ZhangYDingLLovePEDPlanning of deep foundation construction technical specifications using improved case-based reasoning with weighted k-nearest neighborsJ Comput Civ Eng201731504017029 – reference: ChenHHeXTengQSheriffREFengJXiongSSuper-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networksPhysical Review E20201012023305 – reference: Yang HL, Lunga D, Yuan J (2017) Toward country scale building detection with convolutional neural network using aerial images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 870–873 – reference: GohATCZhangYZhangRZhangWXiaoYEvaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regressionTunn Undergr Space Technol201770148154 – reference: ChenHLinHYaoMImproving the efficiency of encoder-decoder architecture for pixel-level crack detectionIEEE Access20197186657186670 – reference: MaoYZhangJQiHWangLDNN-MVL: DNN-Multi-view-learning-based recover block missing data in a dam safety monitoring systemSensors201919132895 – reference: ChengGGuoWRock images classification by using deep convolution neural networkJ Phys: Conference Series, IOP Publish201788710120893661079 – reference: GordanBArmaghaniDJHajihassaniMMonjeziMPrediction of seismic slope stability through combination of particle swarm optimization and neural networkEng Comput20163218597 – reference: ElbeltagiEHegazyTGriersonDComparison among five evolutionary-based optimization algorithmsAdv Eng Inform20051914353 – reference: KhanASohailAZahooraUQureshiASA survey of the recent architectures of deep convolutional neural networksArtif Intell Rev202053854555516 – reference: KimS-HYangJJeongJ-HPrediction of subgrade resilient modulus using artificial neural networkKSCE J Civ Eng201418513721379 – reference: ZhangZLiuZZhengLZhangYDevelopment of an adaptive relevance vector machine approach for slope stability inferenceNeural Comput Appl20142520252035 – reference: DingLFangWLuoHLovePEZhongBOuyangXA deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memoryAutomat construct201886118124 – reference: LazarevskaMKnezevicMCvetkovskaMTrombeva-GavriloskaAApplication of artificial neural networks in civil engineeringTehnički vjesnik201421613531359 – reference: VaillantRMonrocqCLe CunYOriginal approach for the localisation of objects in imagesIEE Proc Vis Image Signal Process19941414245250 – reference: YangBYinKLacasseSLiuZTime series analysis and long short-term memory neural network to predict landslide displacementLandslides2019164677694 – reference: ZhouCXuHDingLWeiLZhouYDynamic prediction for attitude and position in shield tunneling: a deep learning methodAutom Construct2019105102840 – reference: QiCFourieAA real-time back-analysis technique to infer rheological parameters from field monitoringRock Mech Rock Eng2018511030293043 – reference: ZhangWWuCZhongHLiYWangLPrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimizationGeosci Front2020121469477 – reference: Gao W, Dimitrov D, Abdo H (2019a) Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems-Series S 12 – reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein gan. arXiv preprint https://arxiv.org/abs/1701.07875 – reference: CireşAnDMeierUMasciJSchmidhuberJMulti-column deep neural network for traffic sign classificationNeural networks201232333338 – reference: GhorbanzadehOBlaschkeTGholamniaKMeenaSRTiedeDAryalJEvaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detectionRemote Sens2019112196 – reference: Huang L, Li J, Hao H, Li X (2018b) Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning Tunnelling and Underground Space Technology 81:265–276 – reference: ZhangWZhangRWuCGohATCLacasseSLiuZLiuHState-of-the-art review of soft computing applications in underground excavationsGeosci Front201911410951106 – reference: CuiD-MYanWWangX-QLuL-MTowards intelligent interpretation of low strain pile integrity testing results using machine learning techniquesSensors201717112443 – reference: MollahasaniAAlaviAHGandomiAHRashedANonlinear neural-based modeling of soil cohesion interceptKSCE J Civ Eng2011155831840 – reference: LuHMaLFuXLiuCWangZTangMLiNLandslides information extraction using object-oriented image analysis paradigm based on deep learning and transfer learningRemote Sens2020125752 – reference: LinYZhouKLiJApplication of cloud model in rock burst prediction and performance comparison with three machine learnings algorithmsIEEE Access201863095830968 – reference: QinXLiuLWangPWangMXinJMicroscopic Parameter extraction and corresponding strength prediction of cemented paste backfill at different curing timesAdv Civ Eng201810.1155/2018/2837571 – reference: Sermanet P, LeCun Y (2011) Traffic sign recognition with multi-scale convolutional networks. In: The 2011 International Joint Conference on Neural Networks. IEEE, pp 2809–2813 – reference: LuYYiSZengNLiuYZhangYIdentification of rice diseases using deep convolutional neural networksNeurocomputing2017267378384 – reference: Canchumuni SA, Emerick AA, Pacheco MA (2017) Integration of ensemble data assimilation and deep learning for history matching facies models. In: OTC Brasil. Offshore Technology Conference – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE1998861122782324 – reference: ShiLJianpingCJieXProspecting information extraction by text mining based on convolutional neural networks–a case study of the Lala copper deposit, ChinaIEEE Access201865228652297 – reference: XiePZhouAChaIBThe Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced LandslidesIEEE Access201975430554311 – reference: ZhongCLandslide mapping with remote sensing: challenges and opportunitiesInt J Remote Sens202041415551581 – reference: SalsaniADaneshianJShariatiSYazdani-ChamziniATaheriMPredicting roadheader performance by using artificial neural networkNeural Comput Appl20142418231831 – reference: BallJEAndersonDTChanCSComprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the communityJ Appl Remote Sens2017114042609 – reference: Zhang Z, Yang L, Zheng Y (2018c) Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern Recognition, pp 9242–9251 – reference: LeeSJLeeSRKimYSAn approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulationComput Geotech2003306489503 – reference: NejadFPJaksaMBKakhiMMcCabeBAPrediction of pile settlement using artificial neural networks based on standard penetration test dataComput Geotech200936711251133 – reference: Gandomi AH, Alavi AH (2012a) A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Computing and Applications 21(1):189–201 – reference: Zhang P, Sun J, Jiang Y, Gao J (2017a) Deep learning method for lithology identification from borehole images. In: 79th EAGE Conference and Exhibition 2017, European Association of Geoscientists & Engineers, Vol. 2017, No. 1, pp. 1–5 – reference: Marzouk A, Barros P, Eppe M, Wermter S (2019) The Conditional Boundary Equilibrium Generative Adversarial Network and its Application to Facial Attributes. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, pp 1–7 – reference: CalabreseALaiCGFragility functions of blockwork wharves using artificial neural networksSoil Dynam Earthquake Eng20135288102 – reference: Srisutthiyakorn* N (2016) Deep-learning methods for predicting permeability from 2D/3D binary-segmented images. In: SEG technical program expanded abstracts 2016. Society of Exploration Geophysicists, pp 3042–3046 – reference: Fan Y, Qian Y, Xie F-L, Soong FK TTS (2014) synthesis with bidirectional LSTM based recurrent neural networks. In: Fifteenth Annual Conference of the International Speech Communication Association – reference: Ledig C et al. (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690 – reference: MosserLDubruleOBluntMJStochastic reconstruction of an oolitic limestone by generative adversarial networksTransp Porous Media2018125181103 – reference: KarimpouliSTahmasebiPImage-based velocity estimation of rock using Convolutional Neural NetworksNeural Netw20191118997 – reference: Brock A, Donahue J, Simonyan K (2018) Large scale gan training for high fidelity natural image synthesis. arXiv preprint https://arxiv.org/abs/1809.11096 – reference: UncuogluELamanMSaglamerAKaraHBPrediction of lateral effective stresses in sand using artificial neural networkSoils Found2008482141153 – reference: LeeGTaiY-WKimJELD-net: An efficient deep learning architecture for accurate saliency detectionIEEE Trans Pattern Anal Mach Intell201740715991610 – reference: ZhangWZhangRWangWZhangFGohATCA Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in claysTunn Undergr Space Technol201984461471 – reference: ChakrabortyAGoswamiDPrediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN)Arab J Geosci20171017385 – reference: ZhangWGohATCMultivariate adaptive regression splines for analysis of geotechnical engineering systemsComput Geotech2013488295 – reference: MoayediHHuatBBMoayediFAsadiAParsaieAEffect of sodium silicate on unconfined compressive strength of soft clay ElectronicJ Geotech Eng201116289295 – reference: Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8789–8797 – reference: ErzinYArtificial neural networks approach for swell pressure versus soil suction behaviourCan Geotech J2007441012151223 – reference: LuoC-LShaHLingC-LLiJ-YIntelligent Detection for tunnel shotcrete spray using deep Learning and LiDARIEEE Access2020817551766 – reference: ThirugnanamHRameshMVRanganVPEnhancing the reliability of landslide early warning systems by machine learningLandslides202017922312246 – reference: ValsecchiADamasSTubillejaCArechaldeJStochastic reconstruction of 3D porous media from 2D images using generative adversarial networksNeurocomputing2020399227336 – reference: SchmidhuberJDeep learning in neural networks: An overviewNeural networks20156185117 – reference: Abdolahnejad M, Liu PX (2020) Deep learning for face image synthesis and semantic manipulations: a review and future perspectives. Artificial Intelligence Review, 1–34 – reference: Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv preprint https://arxiv.org/abs/1611.02200 – reference: ZhangWLiHWuCLiYLiuZLiuHSoft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling Underground SpaceUnderground Space202010.1016/j.undsp.2019.12.003 – reference: CruzMSantosJMCruzNUsing neural networks and support vector regression to relate marchetti dilatometer test parameters and maximum shear modulusAppl Intell2015421135146 – reference: AdamsMDKanaroglouPSMapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network modelsJ Environ Manage2016168133141 – reference: SinghGWaliaBPerformance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networksNeural Comput Appl2017281289298 – reference: AyyıldızMÇetinkayaKPredictive modeling of geometric shapes of different objects using image processing and an artificial neural networkProc Inst Mech Eng, Part E: J Proc Mech Eng2017231612061216 – reference: GaoWLuXPengYWuLA Deep learning approach replacing the finite difference method for in situ stress predictionIEEE Access202084406344074 – reference: MaJTangHLiuXWenTZhangJTanQFanZProbabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir areaChina Landslides201815611451153 – reference: BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw199452157166 – reference: BengioYLamblinPPopoviciDLarochelleHGreedy layer-wise training of deep networksAdv Neural Inf Process Syst200719153160 – reference: Goodfellow IJ et al. (2014) Generative Adversarial Nets. In: Advances in neural information processing systems pp. 2672–2680 – reference: DongCDongXGehmanJLefsrudLUsing BP neural networks to prioritize risk management approaches for China’s unconventional shale gas industrySustainability201796979 – reference: Shaheen F, Verma B, Asafuddoula M (2016) Impact of automatic feature extraction in deep learning architecture. In: 2016 International conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–8 – reference: MoayediHMosallanezhadMRashidASAJusohWAWMuazuMAA systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applicationsNeural Comput Appl202032495518 – reference: HeMZhangZRenJHuanJLiGChenYLiNDeep convolutional neural network for fast determination of the rock strength parameters using drilling dataInt J Rock Mech Min Sci2019123104084 – reference: Mahendran S, Ali H, Vidal R (2017) 3d pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 2174–2182 – reference: Chen Y, Lai Y-K, Liu Y-J (2018a) Cartoongan: Generative adversarial networks for photo cartoonization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9465–9474 – reference: YangDGuCZhuYDaiBZhangKZhangZLiBA Concrete Dam Deformation Prediction Method Based on LSTM With Attention MechanismIEEE Access20208185177185186 – reference: Gandomi AH, Alavi AH (2012b) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Computing and Applications 21(1):171–187 – reference: JanJCHungSLChiSYChernJCNeural network forecast model in deep excavationJ Comput Civil Eng20021615965 – reference: NassrAEsmaeili-FalakMKatebiHJavadiAA new approach to modeling the behavior of frozen soilsEng Geol20182468290 – reference: ZhangYLiMHanSRenQShiJIntelligent identification for rock-mineral microscopic images using ensemble machine learning algorithmsSensors201919183914 – reference: Phoon K-K (2020) The story of statistics in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 14(1):3–25 – reference: WilliamsRJZipserDA learning algorithm for continually running fully recurrent neural networksNeural Comput198912270280 – reference: MoayediHRezaeiAAn artificial neural network approach for under-reamed piles subjected to uplift forces in dry sandNeural Comput Appl2019312327336 – reference: CaoCShiCLeiMYangWLiuJSqueezing failure of tunnels: A case studyTunn Undergr Space Technol201877188203 – reference: Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4401–4410 – reference: MosserLDubruleOBluntMJReconstruction of three-dimensional porous media using generative adversarial neural networksPhys Rev E2017964043309 – reference: OliveiraDAFerreiraRSSilvaRBrazilEVImproving seismic data resolution with deep generative networksIEEE Geosci Remote Sens Lett2019161219291933 – reference: GaoWGuiraoJLGAbdel-AtyMXiWAn independent set degree condition for fractional critical deleted graphsDis Continus Dynam Syst-S2019124&587739854121418.05101 – reference: LiYChenGTangCZhouGZhengLRainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural NetworkNat Hazards Earth Syst Sci201212827192729 – reference: ZhaoZ-QZhengPXuS-tWuXObject detection with deep learning: a reviewIEEE Trans neural Netw Learn Syst2019301132123232 – reference: XueDWangJZhaoYZhouHQuantitative determination of mining-induced discontinuous stress drop in coalInt J Rock Mech Min Sci2018111111 – reference: Watson J, Wan F, Sibbald A (1995) The use of artificial neural networks in pile integrity testing. CIVIL-COMP95 developments in neural networks and evolutionary computing for civil and structural engineering:7–13 – reference: Egmont-PetersenMde RidderDHandelsHImage processing with neural networks—a reviewPattern Recogn20023510227923011006.68884 – reference: ZhangWZhangYGohATCMultivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavationTunn Undergr Space Technol2017642433 – reference: Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning vol. 1, No. 2. MIT press Cambridge – reference: LiangCLiHLeiMDuQDongting lake water level forecast and its relationship with the three gorges dam based on a long short-term memory networkWater201810101389 – reference: LiJChenHZhouTLiXTailings Pond Risk Prediction Using Long Short-Term Memory NetworksIEEE Access20197182527182537 – reference: He Y-y, Li B-q, Guo Y-s, Wang T-n, Zhu Y (2017) An interpretation model of GPR point data in tunnel geological prediction. In: Eighth International Conference on Graphic and Image Processing (ICGIP 2016). International Society for Optics and Photonics – reference: ZhangPWuH-NChenR-PDaiTMengF-YWangH-BA critical evaluation of machine learning and deep learning in shield-ground interaction predictionTunn Undergr Space Technol2020106103593 – reference: QiCFourieAChenQNeural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill Construction and BuildingMaterials2018159473478 – reference: Wang L, Wu C, Gu X, Liu H, Mei G, Zhang W (2020) Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bulletin of Engineering Geology and the Environment:1–13. https://doi.org/10.1007/s10064-020-01730-0 – reference: Fang Z, Wang Y, Peng L, Hong H (2020) Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences:104470 – reference: GargAGargATaiKBarontiniSStokesAA computational intelligence-based genetic programming approach for the simulation of soil water retention curvesTransp Porous Media20141033497513 – reference: Lee C, Sterling R (1992) Identifying probable failure modes for underground openings using a neural network. In: International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 29, No. 1, pp. 49–67) – reference: NguyenGMachine Learning and Deep Learning frameworks and libraries for large-scale data mining: a surveyArtif Intell Rev201952177124 – reference: LisboaPJA review of evidence of health benefit from artificial neural networks in medical interventionNeural netw20021511139 – reference: QiCTangXSlope stability prediction using integrated metaheuristic and machine learning approaches: a comparative studyComput Ind Eng2018118112122 – reference: van NatijneALLindenberghRCBogaardTAMachine learning: new potential for local and regional deep-seated landslide nowcastingSensors20202051425 – reference: FatehniaMAmiriniaGA review of genetic programming and artificial neural network applications in pile foundationsInt J Geo-Eng2018912 – reference: Sargano AB, Angelov P, Habib Z (2017) A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. applied sciences 7(1):110 – reference: FerreiraAGiraldiGConvolutional Neural Network approaches to granite tiles classificationExpert Syst Appl201784111 – reference: GaoM-YZhangNShenS-LZhouAReal-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GA optimizationIEEE Access202086431064323 – reference: BuiDTTsangaratosPNguyenV-TVan LiemNTrinhPTComparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessmentCATENA2020188104426 – reference: GaoBWangRLinCGuoXLiuBZhangWTBM penetration rate prediction based on the long short-term memory neural networkUnderground Space202010.1016/j.undsp.2020.01.003 – reference: Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint https://arxiv.org/abs/1510.02855 – reference: ChouJ-SThedjaJPPMetaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problemsAutomat Construct2016686580 – reference: GaoXShiMSongXZhangCZhangHRecurrent neural networks for real-time prediction of TBM operating parametersAutomation in Construction201998225235 – reference: Alqahtani N, Armstrong RT, Mostaghimi P (2018) Deep learning convolutional neural networks to predict porous media properties. In: SPE Asia Pacific oil and gas conference and exhibition. Society of Petroleum Engineers – reference: BaziarMJafarianYAssessment of liquefaction triggering using strain energy concept and ANN model: capacity energySoil Dynam Earthquake Eng2007271210561072 – reference: NajjarYMHuangCSimulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approachComput Geotech2007345346361 – reference: Da'uASalimNRecommendation system based on deep learning methods: a systematic review and new directionsArtif Intell Rev20205327092748 – reference: HintonGEOsinderoSTehY-WA fast learning algorithm for deep belief netsNeural Comput20061871527155422244851106.68094 – reference: ShimSKimJChoG-CLeeS-WMultiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structuresIEEE Access20208170939170950 – reference: Bengio Y (2009) Learning deep architectures for AI. Foundations and trends® in Machine Learning 2(1):1–127 – reference: GohATCZhangWZhangYXiaoYXiangYDetermination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approachBull Eng Geol Env2018772489500 – reference: Chen J, Jin Q, Chao J (2012) Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin. Mathematical Problems in Engineering 2012 – reference: WongBKBodnovichTASelviYNeural network applications in business: A review and analysis of the literature (1988–1995)Decis Support Syst1997194301320 – reference: HanSRenFWuCChenYDuQYeXUsing the tensorflow deep neural network to classify mainland china visitor behaviours in hong kong from check-in dataISPRS Int J Geo-Inf201874158 – reference: NelsonEJChaoKCNelsonJDOvertonDDLessons Learned from Foundation and Slab Failures on Expansive SoilsJ Perform Construct Facil2017313D4016007 – reference: XiaoLZhangYPengGLandslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highwaySensors201818124436 – reference: YzLNieZhHwMaStructural damage detection with automatic feature-extraction through deep learningComput-Aided Civ Infrastruct Eng2017321210251046 – reference: Peng G, Wang S (2018) Weakly supervised facial action unit recognition through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2188–2196 – reference: GhorbanzadehOMeenaSRBlaschkeTAryalJUAV-based slope failure detection using deep-learning convolutional neural networksRemote Sens201911172046 – reference: GaoWWuHSiddiquiMKBaigAQStudy of biological networks using graph theorySaudi J biol sci201825612121219 – reference: AzevedoLPaneiroGSantosASoaresAGenerative adversarial network as a stochastic subsurface model reconstructionComput Geosci2020244167316924126436 – reference: DuSWangRWeiCWangYZhouYWangJSongHThe connectivity evaluation among wells in reservoir utilizing machine learning methods IEEEAccess202084720947219 – reference: RanXXueLZhangYLiuZSangXHeJRock classification from field image patches analyzed using a deep convolutional neural networkMathematics201978755 – reference: Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint https://arxiv.org/abs/1411.1784 – reference: AsadiAMoayediHHuatBBParsaieATahaMRArtificial neural networks approach for electrochemical resistivity of highly organic soilInt J Electrochem Sci20116411351145 – reference: NinićJFreitagSMeschkeGA hybrid finite element and surrogate modelling approach for simulation and monitoring supported TBM steeringTunn Undergr Space Technol2017631228 – reference: ShresthaAMahmoodAReview of deep learning algorithms and architecturesIEEE Access201975304053065 – reference: AsadiAMoayediHHuatBBBoroujeniFZParsaieASojoudiSPrediction of zeta potential for tropical peat in the presence of different cations using artificial neural networksInt J Electrochem Sci20116411461158 – reference: Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv preprint https://arxiv.org/abs/1704.06857 – reference: KangBChoeJUncertainty quantification of channel reservoirs assisted by cluster analysis and deep convolutional generative adversarial networksJ Petrol Sci Eng2020187106742 – reference: Barrow H (1996) Connectionism and neural networks. In: Artificial Intelligence, pp 135–155, Academic Press – reference: ZhangADeep Learning-Based Fully Automated Pavement Crack Detection on 3D Asphalt Surfaces with an Improved CrackNetJ Comput Civ Eng201832504018041 – reference: JiaoPAlaviAHArtificial intelligence in seismology: advent, performance and future trendsGeosci Front2020113739744 – reference: Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint https://arxiv.org/abs/1710.10196 – reference: Lv Z, Liu T, Kong X, Shi C, Benediktsson JA (2020) Landslide Inventory Mapping with Bitemporal Aerial Remote Sensing Images Based on the Dual-path Full Convolutional Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – reference: RankovićVNovakovićAGrujovićNDivacDMilivojevićNPredicting piezometric water level in dams via artificial neural networksNeural Comput Appl201424511151121 – reference: HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural netw1989253593661383.92015 – reference: LiYBaoTGongJShuXZhangKThe prediction of dam displacement time series using STL, extra-trees, and stacked LSTM Neural networkIEEE Access202089444094452 – reference: ProtopapadakisEVoulodimosADoulamisADoulamisNStathakiTAutomatic crack detection for tunnel inspection using deep learning and heuristic image post-processingAppl Intell201949727932806 – reference: ShahinMAState-of-the-art review of some artificial intelligence applications in pile foundationsGeosci Front2016713344 – reference: Mabbutt S, Picton P, Shaw P, Black S Review of Artificial Neural Networks (ANN) applied to corrosion monitoring. In: Journal of Physics: Conference Series, IOP Publishing, Vol. 364, No. 1, p. 012114 – reference: MosallanezhadMMoayediHDeveloping hybrid artificial neural network model for predicting uplift resistance of screw pilesArab J Geosci20171022479 – reference: KarlikBanÖzkayaAydinPakdemirliESMVibrations of a beam-mass systems using artificial neural networksComput Struct19986933393470967.74531 – reference: DongYWangJWangZZhangXGaoYSuiQJiangPA Deep-learning-based multiple defect detection method for tunnel lining damagesIEEE Access20197182643182657 – reference: LaryDJAlaviAHGandomiAHWalkerALMachine learning in geosciences and remote sensingGeosci Front201671310 – reference: YuanXLiLWangYNonlinear dynamic soft sensor modeling with supervised long short-term memory networkIEEE Trans Industr Inf201916531683176 – reference: Huang Y, Zhang H, Li H, Wu S (2020) Recovering compressed images for automatic crack segmentation using generative models. arXiv preprint https://arxiv.org/abs/2003.03028 – reference: Gurney K (1997) An introduction to neural networks. CRC press – reference: LaloyEHéraultRLeeJJacquesDLindeNInversion using a new low-dimensional representation of complex binary geological media based on a deep neural networkAdv Water Resour2017110387405 – reference: ZhangT-FTilkePDupontEZhuL-CLiangLBaileyWGenerating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networksPetroleum Science2019163541549 – reference: LiXGongGPredictive control of slurry pressure balance in shield tunneling using diagonal recurrent neural network and evolved particle swarm optimizationAutom Construct2019107102928 – reference: SaikiaPBaruahRDSinghSKChaudhuriPKArtificial Neural Networks in the domain of reservoir characterization: a review from shallow to deep modelsComput Geosci2020135104357 – reference: SupreethaBShenoyNNayakPLion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District2020IndiaApplied Computational Intelligence and Soft Computing10.1155/2020/8685724 – reference: ImamverdiyevYSukhostatLLithological facies classification using deep convolutional neural networkJ Petrol Sci Eng2019174216228 – reference: Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5325–5334 – reference: QuZMeiJLiuLZhouD-YCrack detection of concrete pavement with cross-entropy loss function and improved VGG16 network modelIEEE Access202085456454573 – reference: DongXYuZCaoWShiYMaQA survey on ensemble learningFront Comput Sci202014241258 – reference: XueYLiYA fast detection method via region-based fully convolutional neural networks for shield tunnel lining defectsComput-Aided Civ Infrastruct Eng2018338638654 – reference: Zhang W, Wu C, Li Y, Wang L, Samui P (2019b) Assessment of pile drivability using random forest regression and multivariate adaptive regression splines. Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards:1–14. https://doi.org/10.1080/17499518.2019.1674340 – reference: ShahinMAJaksaMBMaierHRArtificial neural network applications in geotechnical engineering Australian geomechanics20013614962 – reference: ZhangYChanWJaitlyNVery deep convolutional networks for end-to-end speech recognition2017 IEEE International Conference on Acoustics2017IEEESpeech and Signal Processing (ICASSP)48454849 – reference: YeCLandslide Detection of Hyperspectral Remote Sensing Data Based on Deep Learning With ConstrainsIEEE J Select Topics Appl Earth Observat Remote Sens2019121250475060 – reference: He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 – reference: LiCWangYZhangXGaoHYangYWangJDeep belief network for spectral–spatial classification of hyperspectral remote sensor dataSensors2019191204 – reference: Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2794–2802 – reference: CanchumuniSWEmerickAAPachecoMACHistory matching geological facies models based on ensemble smoother and deep generative modelsJ Petrol Sci Eng2019177941958 – reference: Liu X, Cheng G, Wang B, Lin S (2012) Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Engineering 2012 – reference: WuYHaoYTaoJTengYDongXNon-destructive testing on anchorage quality of hollow grouted rock bolt for application in tunneling, lessons learned from their uses in coal minesTunn Undergr Space Technol201993103094 – reference: ZhouYSuWDingLLuoHLovePEDPredicting safety risks in deep foundation pits in subway infrastructure projects: support vector machine approachJ Comput Civ Eng201731504017052 – reference: LitjensGA survey on deep learning in medical image analysisMed Image Anal2017426088 – reference: MoayediHArmaghaniDJOptimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soilEng Comput2018342347356 – reference: ChuaCGGohATCEstimating wall deflections in deep excavations using Bayesian neural networksTunn Undergr Space Technol2005204400409 – reference: Xing Y, Yue J, Chen C, Qin Y, Hu J (2020) A hybrid prediction model of landslide displacement with risk-averse adaptation. Computers & Geosciences:104527 – reference: ZhangRWuCGohATCBöhlkeTZhangWEstimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learningGeosci Front2020121365373 – reference: LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachIEEE Trans Intell Transp Syst2014162865873 – reference: ZhangYWangGLiMHanSAutomated classification analysis of geological structures based on images data and deep learning modelAppl Sci-Basel20188122493 – reference: Yu H, Ma Y, Wang L, Zhai Y, Wang X (2017) A landslide intelligent detection method based on CNN and RSG_R. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, pp 40–44 – reference: GaoWGuiraoJLBasavanagoudBWuJPartial multi-dividing ontology learning algorithmInf Sci2018467355838515501441.68244 – reference: LawrenceSGilesCLTsoiACBackADFace recognition: A convolutional neural-network approachIEEE Trans Neural Netw19978198113 – reference: AhmadIEl NaggarMHKhanANArtificial neural network application to estimate kinematic soil pile interaction response parametersSoil Dynam Earthquake Eng2007279892905 – reference: TanYLuYForensic diagnosis of a leaking accident during excavationJ Perform Construct Facil201731504017061 – reference: ZhouYLiSZhouCLuoHIntelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stationsJ Comput Civ Eng201933105018004 – reference: LiuBZhangYHeDLiYIdentification of apple leaf diseases based on deep convolutional neural networksSymmetry201810111 – reference: LiuYWuLGeological disaster recognition on optical remote sensing images using deep learningProcedia Comput Sci201691566575 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 – reference: ZhaoSZhangDMHuangHWDeep learning–based image instance segmentation for moisture marks of shield tunnel liningTunn Undergr Space Technol202095103156 – reference: FukushimaKMiyakeSNeocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in positionPattern Recogn1982156455469 – reference: Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint https://arxiv.org/abs/1511.06434 – reference: Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Icdar Vol. 3, No. 2003 – reference: ZhangWGohATCMultivariate adaptive regression splines and neural network models for prediction of pile drivabilityGeosci Front2016714552 – reference: ShenDWuGSukH-IDeep learning in medical image analysisAnnu Rev Biomed Eng201719221248 – reference: HuangH-wLiQ-tZhangD-mDeep learning based image recognition for crack and leakage defects of metro shield tunnelTunn Undergr Space Technol201877166176 – reference: WeiZHuHZhouH-wLauACharacterizing rock facies using machine learning algorithm based on a convolutional neural network and data padding strategyPure Appl Geophys2019176835933605 – reference: LeiTZhangYLvZLiSLiuSNandiAKLandslide inventory mapping from bitemporal images using deep convolutional neural networksIEEE Geosci Remote Sens Lett2019166982986 – reference: ChenRPLiZCChenYMOuCYHuQRaoMFailure Investigation at a Collapsed Deep Excavation in Very Sensitive Organic Soft ClayJ Perform Constr Facil201529304014078 – reference: LiJZhaoFWangXCaoFHanXThe underground explosion point measurement method based on high-precision location of energy focusIEEE Access20208165989166002 – reference: ShahinMAA review of artificial intelligence applications in shallow foundationsInt J Geotech Eng2015914960 – reference: Ding A, Zhang Q, Zhou X, Dai B (2016) Automatic recognition of landslide based on CNN and texture change detection. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp 444–448 – reference: RahmanMWangJDengWCarterJA neural network model for the uplift capacity of suction caissonsComput Geotech2001284269287 – reference: XuSNiuRDisplacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, ChinaComput Geosci20181118796 – reference: BagińskaMSrokoszPEThe optimal ANN Model for predicting bearing capacity of shallow foundations trained on scarce dataKSCE J Civil Eng2019231130137 – reference: WangYTengQHeXFengJZhangTCT-image of rock samples super resolution using 3D convolutional neural networkComput Geosci2019133104314 – reference: GohATCWongKBromsBEstimation of lateral wall movements in braced excavations using neural networksCan Geotech J199532610591064 – reference: BenardosAKaliampakosDModelling TBM performance with artificial neural networksTunn Undergr Space Technol2004196597605 – reference: ZhouCOuyangJMingWZhangGDuZLiuZA stratigraphic prediction method based on machine learningAppl Sci-Basel20199173553 – reference: JanssensNHuysmansMSwennenRComputed tomography 3D super-resolution with generative Adversarial neural networks: implications on unsaturated and two-phase fluid flowMaterials20201361397 – reference: KimHKimHHongYWByunHDetecting construction equipment using a region-based fully convolutional network and transfer learningJ Comp Civil Eng201832204017082 – reference: HanSLiHLiMRoseTA Deep Learning Based Method for the Non-Destructive Measuring of Rock Strength through Hammering SoundAppl Sci-Basel20199173484 – reference: GentinePPritchardMRaspSReinaudiGYacalisGCould machine learning break the convection parameterization deadlock?Geophys Res Lett2018451157425751 – reference: ZhaoJShiMHuGSongXZhangCTaoDWuWA data-driven framework for tunnel geological-type prediction based on TBM operating dataIEEE Access201976670366713 – reference: SalimansTGoodfellowIZarembaWCheungVRadfordAChenXImproved techniques for training gansAdv Neural Inf Process Syst20162922342242 – reference: ChenZZhangYOuyangCZhangFMaJAutomated landslides detection for mountain cities using multi-temporal remote sensing imagerySensors2018183821 – reference: AsadiAShariatmadariNMoayediHHuatBBEffect of MSW leachate on soil consistency under influence of electrochemical forces induced by soil particlesInt J Electrochem Sci20116723442351 – reference: Mikolov T, Karafiát M, Burget L, Černocký J, Khudanpur S (2010) Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association, pp 1045–1048 – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput19979817351780 – reference: Guirado E, Tabik S, Alcaraz-Segura D, Cabello J, Herrera F (2017) Deep-learning convolutional neural networks for scattered shrub detection with google earth imagery. arXiv preprint https://arxiv.org/abs/1706.00917 – reference: HashashYMALevasseurSOsouliAFinnoRMalecotYComparison of two inverse analysis techniques for learning deep excavation responseComput Geotech2010373323333 – reference: HavaeiMBrain tumor segmentation with deep neural networksMed Image Anal2017351831 – reference: SongQReal-time tunnel crack analysis system via deep learningIEEE Access201976418664197 – reference: Bao J, Chen D, Wen F, Li H, Hua G (2018) Towards open-set identity preserving face synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 6713–6722 – reference: KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksCommun ACM20176068490 – reference: NaghadehiMZThewesMLavasanAAFace stability analysis of mechanized shield tunneling: An objective systems approach to the problemEng Geol2019262105307 – reference: GohATCZhangWAn improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splinesEng Geol2014170110 – reference: TanYLuYWhy Excavation of a Small Air Shaft Caused Excessively Large Displacements: Forensic InvestigationJ Perform Construct Facil2017312040160833675035 – reference: NhuV-HEffectiveness assessment of keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical areaCATENA2020188104458 – reference: ZhangWGohATCZhangYChenYXiaoYAssessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splinesEng Geol20151882937 – reference: Van HoudtGMosqueraCNápolesGA review on the long short-term memory modelArtif Intell Rev20205359295955 – reference: KaplińskiOKošelevaNRopaitėGBig Data in civil engineering: a state-of-the-art surveyEng Struct Technol201684165175 – reference: Maier H, Dandy G (2000) Application of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges. In: Artificial neural networks in hydrology. Springer, pp 287–309 – reference: Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: International conference on machine learning, pp 1310–1318 – reference: Cui Y, Ju S-G, Han F, Gu T-Y (2009) An improved approach combining random PSO with BP for feedforward neural networks. In: International Conference on Artificial Intelligence and Computational Intelligence, pp 361–368 – reference: BangSParkSKimHKimHEncoder-decoder network for pixel-level road crack detection in black-box imagesComput-Aided Civil Infrastruct Eng2019348713727 – reference: HanSLiHLiMLuoXMeasuring rock surface strength based on spectrograms with deep convolutional networksComput Geosci2019133104312 – reference: KangJ-MKimI-MLeeSRyuD-WKwonJA deep CNN-based ground vibration monitoring scheme for MEMS sensed dataIEEE Geosci Remote Sens Lett2019172347351 – reference: IkizlerSBVekliMDoganEAytekinMKocabasFPrediction of swelling pressures of expansive soils using soft computing methodsNeural Comput Appl20142424734851406.74487 – reference: Ma S, Fu J, Wen Chen C, Mei T (2018b) Da-gan: Instance-level image translation by deep attention generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5657–5666 – reference: HuangYLiJFuJReview on Application of Artificial Intelligence in Civil EngineeringCMES-Comput Model Eng Sci20191213845875 – reference: QinXCuiSLiuLWangPWangMXinJPrediction of Mechanical strength based on deep learning using the scanning electron image of microscopic cemented paste backfillAdv Civ Eng201810.1155/2018/6245728 – reference: LiJLiPGuoDLiXChenZAdvanced prediction of tunnel boring machine performance based on big dataGeosci Front2020121331338 – volume: 19 start-page: 597 issue: 6 year: 2004 ident: 9967_CR17 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2004.02.128 – volume: 19 start-page: 204 issue: 1 year: 2019 ident: 9967_CR126 publication-title: Sensors doi: 10.3390/s19010204 – volume: 28 start-page: 289 issue: 1 year: 2017 ident: 9967_CR199 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2345-1 – volume: 11 start-page: 2046 issue: 17 year: 2019 ident: 9967_CR70 publication-title: Remote Sens doi: 10.3390/rs11172046 – volume: 10 start-page: 11 issue: 1 year: 2018 ident: 9967_CR137 publication-title: Symmetry doi: 10.3390/sym10010011 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 9967_CR117 publication-title: Proc IEEE doi: 10.1109/5.726791 – ident: 9967_CR96 doi: 10.1016/j.ymssp.2020.107061 – volume: 10 start-page: 479 issue: 22 year: 2017 ident: 9967_CR158 publication-title: Arab J Geosci doi: 10.1007/s12517-017-3285-5 – volume: 23 start-page: 130 issue: 1 year: 2019 ident: 9967_CR11 publication-title: KSCE J Civil Eng doi: 10.1007/s12205-018-2636-4 – volume: 63 start-page: 12 year: 2017 ident: 9967_CR168 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2016.12.004 – volume: 7 start-page: 755 issue: 8 year: 2019 ident: 9967_CR182 publication-title: Mathematics doi: 10.3390/math7080755 – volume: 29 start-page: 2234 year: 2016 ident: 9967_CR185 publication-title: Adv Neural Inf Process Syst – ident: 9967_CR1 doi: 10.1007/s10462-020-09835-4 – volume: 18 start-page: 821 issue: 3 year: 2018 ident: 9967_CR30 publication-title: Sensors doi: 10.3390/s18030821 – volume: 68 start-page: 65 year: 2016 ident: 9967_CR36 publication-title: Automat Construct doi: 10.1016/j.autcon.2016.03.015 – volume: 111 start-page: 1 year: 2018 ident: 9967_CR225 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.08.003 – ident: 9967_CR14 doi: 10.1109/CVPR.2018.00702 – ident: 9967_CR53 doi: 10.1016/j.cageo.2020.104470 – volume: 32 start-page: 04017082 issue: 2 year: 2018 ident: 9967_CR111 publication-title: J Comp Civil Eng doi: 10.1061/(ASCE)CP.1943-5487.0000731 – volume: 16 start-page: 59 issue: 1 year: 2002 ident: 9967_CR99 publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)0887-3801(2002)16:1(59) – volume: 77 start-page: 489 issue: 2 year: 2018 ident: 9967_CR75 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-016-0937-8 – ident: 9967_CR142 doi: 10.1109/JSTARS.2020.2980895 – volume: 18 start-page: 4436 issue: 12 year: 2018 ident: 9967_CR220 publication-title: Sensors doi: 10.3390/s18124436 – volume: 19 start-page: 153 year: 2007 ident: 9967_CR20 publication-title: Adv Neural Inf Process Syst – ident: 9967_CR119 doi: 10.1016/0148-9062(92)91044-6 – volume: 69 start-page: 339 issue: 3 year: 1998 ident: 9967_CR106 publication-title: Comput Struct doi: 10.1016/S0045-7949(98)00126-6 – volume: 12 start-page: 331 issue: 1 year: 2020 ident: 9967_CR130 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.02.011 – volume: 11 start-page: 1095 issue: 4 year: 2019 ident: 9967_CR244 publication-title: Geosci Front doi: 10.1016/j.gsf.2019.12.003 – volume: 6 start-page: 1135 issue: 4 year: 2011 ident: 9967_CR7 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)15062-0 – volume: 9 start-page: 49 issue: 1 year: 2015 ident: 9967_CR191 publication-title: Int J Geotech Eng doi: 10.1179/1939787914Y.0000000058 – volume: 8 start-page: 98 issue: 1 year: 1997 ident: 9967_CR115 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.554195 – volume: 7 start-page: 186657 year: 2019 ident: 9967_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961375 – volume: 20 start-page: 400 issue: 4 year: 2005 ident: 9967_CR37 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2005.02.001 – volume: 40 start-page: 1599 issue: 7 year: 2017 ident: 9967_CR121 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2737631 – volume: 111 start-page: 89 year: 2019 ident: 9967_CR105 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.12.006 – start-page: 4845 volume-title: 2017 IEEE International Conference on Acoustics year: 2017 ident: 9967_CR238 – ident: 9967_CR107 – volume: 9 start-page: 3484 issue: 17 year: 2019 ident: 9967_CR83 publication-title: Appl Sci-Basel doi: 10.3390/app9173484 – ident: 9967_CR212 – ident: 9967_CR240 doi: 10.3997/2214-4609.201700945 – volume: 53 start-page: 5929 year: 2020 ident: 9967_CR210 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09838-1 – year: 2018 ident: 9967_CR178 publication-title: Adv Civ Eng doi: 10.1155/2018/2837571 – volume: 7 start-page: 45 issue: 1 year: 2016 ident: 9967_CR234 publication-title: Geosci Front doi: 10.1016/j.gsf.2014.10.003 – ident: 9967_CR31 doi: 10.1109/CVPR.2018.00986 – volume: 8 start-page: 2493 issue: 12 year: 2018 ident: 9967_CR242 publication-title: Appl Sci-Basel doi: 10.3390/app8122493 – ident: 9967_CR187 doi: 10.3390/app7010110 – ident: 9967_CR230 doi: 10.1109/ICMA.2017.8015785 – volume: 106 start-page: 103593 year: 2020 ident: 9967_CR250 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103593 – volume: 8 start-page: 185177 year: 2020 ident: 9967_CR228 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029562 – volume: 19 start-page: 221 year: 2017 ident: 9967_CR194 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – volume: 34 start-page: 347 issue: 2 year: 2018 ident: 9967_CR153 publication-title: Eng Comput doi: 10.1007/s00366-017-0545-7 – volume: 101 start-page: 023305 issue: 2 year: 2020 ident: 9967_CR33 publication-title: Physical Review E doi: 10.1103/PhysRevE.101.023305 – volume: 7 start-page: 64186 year: 2019 ident: 9967_CR200 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916330 – volume: 53 start-page: 5455 issue: 8 year: 2020 ident: 9967_CR109 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09825-6 – volume: 33 start-page: 05018004 issue: 1 year: 2019 ident: 9967_CR259 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000796 – ident: 9967_CR150 doi: 10.1109/IJCNN.2019.8852164 – year: 2020 ident: 9967_CR252 publication-title: Underground Space doi: 10.1016/j.undsp.2019.12.003 – ident: 9967_CR248 doi: 10.1080/17499518.2019.1674340 – volume: 8 start-page: 165989 year: 2020 ident: 9967_CR129 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015486 – ident: 9967_CR108 doi: 10.1109/CVPR.2019.00453 – volume: 37 start-page: 323 issue: 3 year: 2010 ident: 9967_CR84 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2009.11.005 – ident: 9967_CR201 doi: 10.1190/segam2016-13972613.1 – volume: 9 start-page: 2 issue: 1 year: 2018 ident: 9967_CR54 publication-title: Int J Geo-Eng doi: 10.1186/s40703-017-0067-6 – volume: 64 start-page: 24 year: 2017 ident: 9967_CR239 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2017.01.009 – volume: 24 start-page: 1673 issue: 4 year: 2020 ident: 9967_CR10 publication-title: Comput Geosci doi: 10.1007/s10596-020-09978-x – ident: 9967_CR35 doi: 10.1109/CVPR.2018.00916 – ident: 9967_CR145 doi: 10.1088/1742-6596/364/1/012114 – volume: 48 start-page: 141 issue: 2 year: 2008 ident: 9967_CR207 publication-title: Soils Found doi: 10.3208/sandf.48.141 – volume: 25 start-page: 2025 year: 2014 ident: 9967_CR235 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1690-1 – volume: 30 start-page: 489 issue: 6 year: 2003 ident: 9967_CR120 publication-title: Comput Geotech doi: 10.1016/S0266-352X(03)00058-2 – volume: 177 start-page: 941 year: 2019 ident: 9967_CR25 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.02.037 – ident: 9967_CR146 doi: 10.1109/ICCVW.2017.254 – volume: 7 start-page: 66703 year: 2019 ident: 9967_CR254 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917756 – volume: 35 start-page: 18 year: 2017 ident: 9967_CR85 publication-title: Med Image Anal doi: 10.1016/j.media.2016.05.004 – volume: 7 start-page: 158 issue: 4 year: 2018 ident: 9967_CR81 publication-title: ISPRS Int J Geo-Inf doi: 10.3390/ijgi7040158 – volume: 135 start-page: 104357 year: 2020 ident: 9967_CR184 publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.104357 – year: 2018 ident: 9967_CR177 publication-title: Adv Civ Eng doi: 10.1155/2018/6245728 – ident: 9967_CR43 doi: 10.1109/YAC.2016.7804935 – volume: 141 start-page: 245 issue: 4 year: 1994 ident: 9967_CR208 publication-title: IEE Proc Vis Image Signal Process doi: 10.1049/ip-vis:19941301 – volume: 86 start-page: 118 year: 2018 ident: 9967_CR44 publication-title: Automat construct doi: 10.1016/j.autcon.2017.11.002 – ident: 9967_CR52 doi: 10.21437/Interspeech.2014-443 – volume: 44 start-page: 1215 issue: 10 year: 2007 ident: 9967_CR51 publication-title: Can Geotech J doi: 10.1139/T07-052 – volume: 110 start-page: 387 year: 2017 ident: 9967_CR113 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2017.09.029 – volume: 45 start-page: 5742 issue: 11 year: 2018 ident: 9967_CR69 publication-title: Geophys Res Lett doi: 10.1029/2018GL078202 – volume: 105 start-page: 102840 year: 2019 ident: 9967_CR260 publication-title: Autom Construct doi: 10.1016/j.autcon.2019.102840 – volume: 16 start-page: 541 issue: 3 year: 2019 ident: 9967_CR247 publication-title: Petroleum Science doi: 10.1007/s12182-019-0328-4 – volume: 188 start-page: 104426 year: 2020 ident: 9967_CR22 publication-title: CATENA doi: 10.1016/j.catena.2019.104426 – volume: 9 start-page: 3553 issue: 17 year: 2019 ident: 9967_CR258 publication-title: Appl Sci-Basel doi: 10.3390/app9173553 – volume: 18 start-page: 1372 issue: 5 year: 2014 ident: 9967_CR110 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-014-0316-6 – ident: 9967_CR144 doi: 10.1109/CVPR.2018.00593 – volume: 125 start-page: 81 issue: 1 year: 2018 ident: 9967_CR160 publication-title: Transp Porous Media doi: 10.1007/s11242-018-1039-9 – volume: 168 start-page: 133 year: 2016 ident: 9967_CR2 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2015.12.012 – volume: 7 start-page: 33 issue: 1 year: 2016 ident: 9967_CR192 publication-title: Geosci Front doi: 10.1016/j.gsf.2014.10.002 – volume: 17 start-page: 2443 issue: 11 year: 2017 ident: 9967_CR41 publication-title: Sensors doi: 10.3390/s17112443 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 9967_CR91 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 9967_CR21 – volume: 12 start-page: 877 issue: 4&5 year: 2019 ident: 9967_CR61 publication-title: Dis Continus Dynam Syst-S – volume: 20 start-page: 1425 issue: 5 year: 2020 ident: 9967_CR211 publication-title: Sensors doi: 10.3390/s20051425 – year: 2020 ident: 9967_CR64 publication-title: Underground Space doi: 10.1016/j.undsp.2020.01.003 – ident: 9967_CR136 doi: 10.5402/2012/678329 – volume: 51 start-page: 3029 issue: 10 year: 2018 ident: 9967_CR174 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1513-2 – volume: 7 start-page: 53040 year: 2019 ident: 9967_CR197 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 – volume: 8 start-page: 44063 year: 2020 ident: 9967_CR66 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977880 – volume: 8 start-page: 54564 year: 2020 ident: 9967_CR179 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981561 – ident: 9967_CR4 doi: 10.2118/191906-MS – volume: 231 start-page: 1206 issue: 6 year: 2017 ident: 9967_CR9 publication-title: Proc Inst Mech Eng, Part E: J Proc Mech Eng doi: 10.1177/0954408916659310 – ident: 9967_CR76 – ident: 9967_CR28 doi: 10.1155/2012/235929 – volume: 6 start-page: 2344 issue: 7 year: 2011 ident: 9967_CR8 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)18189-2 – volume: 31 start-page: 04016083 issue: 2 year: 2017 ident: 9967_CR204 publication-title: J Perform Construct Facil doi: 10.1061/(ASCE)CF.1943-5509.0000947 – volume: 12 start-page: 365 issue: 1 year: 2020 ident: 9967_CR249 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.03.003 – ident: 9967_CR24 doi: 10.4043/28015-MS – volume: 176 start-page: 3593 issue: 8 year: 2019 ident: 9967_CR216 publication-title: Pure Appl Geophys doi: 10.1007/s00024-019-02152-0 – volume: 95 start-page: 103156 year: 2020 ident: 9967_CR255 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.103156 – volume: 6 start-page: 1146 issue: 4 year: 2011 ident: 9967_CR6 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)15063-2 – volume: 11 start-page: 042609 issue: 4 year: 2017 ident: 9967_CR12 publication-title: J Appl Remote Sens – volume: 70 start-page: 148 year: 2017 ident: 9967_CR74 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2017.07.013 – volume: 91 start-page: 566 year: 2016 ident: 9967_CR135 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.07.144 – ident: 9967_CR222 doi: 10.1016/j.cageo.2020.104527 – ident: 9967_CR18 doi: 10.1561/2200000006 – volume: 17 start-page: 347 issue: 2 year: 2019 ident: 9967_CR103 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2019.2918641 – volume: 7 start-page: 3 issue: 1 year: 2016 ident: 9967_CR114 publication-title: Geosci Front doi: 10.1016/j.gsf.2015.07.003 – volume: 16 start-page: 289 year: 2011 ident: 9967_CR155 publication-title: J Geotech Eng – ident: 9967_CR171 doi: 10.1109/CVPR.2018.00233 – ident: 9967_CR203 – volume: 16 start-page: 982 issue: 6 year: 2019 ident: 9967_CR122 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2018.2889307 – ident: 9967_CR243 doi: 10.1109/CVPR.2018.00963 – volume: 96 start-page: 043309 issue: 4 year: 2017 ident: 9967_CR159 publication-title: Phys Rev E doi: 10.1103/PhysRevE.96.043309 – volume: 267 start-page: 378 year: 2017 ident: 9967_CR138 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.023 – volume: 42 start-page: 135 issue: 1 year: 2015 ident: 9967_CR39 publication-title: Appl Intell doi: 10.1007/s10489-014-0576-3 – volume: 32 start-page: 85 issue: 1 year: 2016 ident: 9967_CR78 publication-title: Eng Comput doi: 10.1007/s00366-015-0400-7 – volume: 6 start-page: 52286 year: 2018 ident: 9967_CR195 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870203 – volume: 84 start-page: 461 year: 2019 ident: 9967_CR245 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.11.046 – volume: 10 start-page: 1389 issue: 10 year: 2018 ident: 9967_CR131 publication-title: Water doi: 10.3390/w10101389 – volume: 467 start-page: 35 year: 2018 ident: 9967_CR59 publication-title: Inf Sci doi: 10.1016/j.ins.2018.07.049 – volume: 159 start-page: 473 year: 2018 ident: 9967_CR176 publication-title: Materials – ident: 9967_CR118 doi: 10.1109/CVPR.2017.19 – ident: 9967_CR190 doi: 10.1109/DICTA.2016.7797053 – volume: 36 start-page: 49 issue: 1 year: 2001 ident: 9967_CR193 publication-title: Artificial neural network applications in geotechnical engineering Australian geomechanics – volume: 9 start-page: 979 issue: 6 year: 2017 ident: 9967_CR45 publication-title: Sustainability doi: 10.3390/su9060979 – volume: 12 start-page: 752 issue: 5 year: 2020 ident: 9967_CR139 publication-title: Remote Sens doi: 10.3390/rs12050752 – volume: 7 start-page: 54305 year: 2019 ident: 9967_CR221 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912419 – ident: 9967_CR151 doi: 10.21437/Interspeech.2010-343 – volume: 41 start-page: 1555 issue: 4 year: 2020 ident: 9967_CR256 publication-title: Int J Remote Sens doi: 10.1080/01431161.2019.1672904 – ident: 9967_CR58 doi: 10.1007/s00521-011-0734-z – volume: 123 start-page: 104084 year: 2019 ident: 9967_CR89 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2019.104084 – volume: 8 start-page: 1755 year: 2020 ident: 9967_CR140 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962496 – volume: 246 start-page: 82 year: 2018 ident: 9967_CR163 publication-title: Eng Geol doi: 10.1016/j.enggeo.2018.09.018 – volume: 98 start-page: 225 year: 2019 ident: 9967_CR62 publication-title: Automation in Construction doi: 10.1016/j.autcon.2018.11.013 – volume: 133 start-page: 104314 year: 2019 ident: 9967_CR213 publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.104314 – volume: 103 start-page: 497 issue: 3 year: 2014 ident: 9967_CR68 publication-title: Transp Porous Media doi: 10.1007/s11242-014-0313-8 – ident: 9967_CR63 doi: 10.3934/dcdss.2019045 – volume: 1 start-page: 270 issue: 2 year: 1989 ident: 9967_CR217 publication-title: Neural Comput doi: 10.1162/neco.1989.1.2.270 – volume: 16 start-page: 677 issue: 4 year: 2019 ident: 9967_CR227 publication-title: Landslides doi: 10.1007/s10346-018-01127-x – volume: 8 start-page: 165 issue: 4 year: 2016 ident: 9967_CR104 publication-title: Eng Struct Technol – ident: 9967_CR152 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 9967_CR112 publication-title: Commun ACM doi: 10.1145/3065386 – ident: 9967_CR77 – volume: 8 start-page: 94440 year: 2020 ident: 9967_CR128 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995592 – volume: 31 start-page: 327 issue: 2 year: 2019 ident: 9967_CR154 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2990-z – volume: 21 start-page: 1353 issue: 6 year: 2014 ident: 9967_CR116 publication-title: Tehnički vjesnik – volume: 174 start-page: 216 year: 2019 ident: 9967_CR98 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2018.11.023 – volume: 52 start-page: 77 issue: 1 year: 2019 ident: 9967_CR166 publication-title: Artif Intell Rev doi: 10.1007/s10462-018-09679-z – volume: 19 start-page: 3914 issue: 18 year: 2019 ident: 9967_CR246 publication-title: Sensors doi: 10.3390/s19183914 – ident: 9967_CR88 doi: 10.1117/12.2266226 – volume: 121 start-page: 845 issue: 3 year: 2019 ident: 9967_CR95 publication-title: CMES-Comput Model Eng Sci – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 9967_CR90 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – ident: 9967_CR226 doi: 10.1109/IGARSS.2017.8127091 – volume: 84 start-page: 1 year: 2017 ident: 9967_CR55 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.053 – ident: 9967_CR94 doi: 10.1016/j.tust.2018.07.006 – volume: 32 start-page: 1025 issue: 12 year: 2017 ident: 9967_CR232 publication-title: Comput-Aided Civ Infrastruct Eng doi: 10.1111/mice.12313 – volume: 61 start-page: 85 year: 2015 ident: 9967_CR188 publication-title: Neural networks doi: 10.1016/j.neunet.2014.09.003 – volume: 111 start-page: 87 year: 2018 ident: 9967_CR223 publication-title: Comput Geosci doi: 10.1016/j.cageo.2017.10.013 – volume: 6 start-page: 30958 year: 2018 ident: 9967_CR132 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2839754 – volume: 24 start-page: 1823 year: 2014 ident: 9967_CR186 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1434-7 – volume: 15 start-page: 455 issue: 6 year: 1982 ident: 9967_CR56 publication-title: Pattern Recogn doi: 10.1016/0031-3203(82)90024-3 – volume: 887 start-page: 012089 issue: 1 year: 2017 ident: 9967_CR34 publication-title: J Phys: Conference Series, IOP Publish – ident: 9967_CR214 doi: 10.1007/s10064-020-01730-0 – volume: 10 start-page: 385 issue: 17 year: 2017 ident: 9967_CR27 publication-title: Arab J Geosci doi: 10.1007/s12517-017-3167-x – volume: 42 start-page: 60 year: 2017 ident: 9967_CR134 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 31 start-page: 04017061 issue: 5 year: 2017 ident: 9967_CR205 publication-title: J Perform Construct Facil doi: 10.1061/(ASCE)CF.1943-5509.0001058 – ident: 9967_CR172 doi: 10.1080/17499518.2019.1700423 – ident: 9967_CR170 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 9967_CR19 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.279181 – volume: 19 start-page: 2895 issue: 13 year: 2019 ident: 9967_CR149 publication-title: Sensors doi: 10.3390/s19132895 – volume: 16 start-page: 865 issue: 2 year: 2014 ident: 9967_CR141 publication-title: IEEE Trans Intell Transp Syst – volume: 53 start-page: 2709 year: 2020 ident: 9967_CR42 publication-title: Artif Intell Rev doi: 10.1007/s10462-019-09744-1 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 9967_CR92 publication-title: Neural netw doi: 10.1016/0893-6080(89)90020-8 – volume: 12 start-page: 2719 issue: 8 year: 2012 ident: 9967_CR124 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-12-2719-2012 – volume: 27 start-page: 892 issue: 9 year: 2007 ident: 9967_CR3 publication-title: Soil Dynam Earthquake Eng doi: 10.1016/j.soildyn.2006.12.009 – volume: 34 start-page: 346 issue: 5 year: 2007 ident: 9967_CR162 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2007.06.006 – ident: 9967_CR215 – volume: 12 start-page: 5047 issue: 12 year: 2019 ident: 9967_CR229 publication-title: IEEE J Select Topics Appl Earth Observat Remote Sens doi: 10.1109/JSTARS.2019.2951725 – volume: 7 start-page: 182527 year: 2019 ident: 9967_CR127 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2959820 – volume: 118 start-page: 112 year: 2018 ident: 9967_CR175 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.02.028 – ident: 9967_CR67 doi: 10.1016/j.asoc.2018.05.018 – volume: 24 start-page: 473 issue: 2 year: 2014 ident: 9967_CR97 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1254-1 – volume: 15 start-page: 1145 issue: 6 year: 2018 ident: 9967_CR143 publication-title: China Landslides doi: 10.1007/s10346-017-0941-5 – volume: 7 start-page: 182643 year: 2019 ident: 9967_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931074 – volume: 31 start-page: 04017029 issue: 5 year: 2017 ident: 9967_CR237 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000682 – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 9967_CR253 publication-title: IEEE Trans neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2876865 – volume: 13 start-page: 1397 issue: 6 year: 2020 ident: 9967_CR100 publication-title: Materials doi: 10.3390/ma13061397 – ident: 9967_CR80 doi: 10.4324/9780203451519 – volume: 16 start-page: 1929 issue: 12 year: 2019 ident: 9967_CR169 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2019.2913593 – volume: 16 start-page: 3168 issue: 5 year: 2019 ident: 9967_CR231 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2019.2902129 – volume: 19 start-page: 43 issue: 1 year: 2005 ident: 9967_CR50 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2005.01.004 – volume: 31 start-page: D4016007 issue: 3 year: 2017 ident: 9967_CR165 publication-title: J Perform Construct Facil doi: 10.1061/(ASCE)CF.1943-5509.0000958 – ident: 9967_CR147 doi: 10.1007/978-94-015-9341-0_15 – ident: 9967_CR189 doi: 10.1109/IJCNN.2011.6033589 – volume: 8 start-page: 64310 year: 2020 ident: 9967_CR65 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984515 – volume: 33 start-page: 638 issue: 8 year: 2018 ident: 9967_CR224 publication-title: Comput-Aided Civ Infrastruct Eng doi: 10.1111/mice.12367 – volume: 36 start-page: 1125 issue: 7 year: 2009 ident: 9967_CR164 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2009.04.003 – volume: 12 start-page: 469 issue: 1 year: 2020 ident: 9967_CR251 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.03.007 – volume: 52 start-page: 88 year: 2013 ident: 9967_CR23 publication-title: Soil Dynam Earthquake Eng doi: 10.1016/j.soildyn.2013.05.002 – volume: 32 start-page: 04018041 issue: 5 year: 2018 ident: 9967_CR241 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000775 – volume: 24 start-page: 1115 issue: 5 year: 2014 ident: 9967_CR183 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1334-2 – ident: 9967_CR5 – ident: 9967_CR148 doi: 10.1109/ICCV.2017.304 – volume: 28 start-page: 269 issue: 4 year: 2001 ident: 9967_CR181 publication-title: Comput Geotech doi: 10.1016/S0266-352X(00)00033-1 – volume: 31 start-page: 04017052 issue: 5 year: 2017 ident: 9967_CR257 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000700 – ident: 9967_CR57 doi: 10.1007/s00521-011-0735-y – volume: 49 start-page: 2793 issue: 7 year: 2019 ident: 9967_CR173 publication-title: Appl Intell doi: 10.1007/s10489-018-01396-y – volume: 11 start-page: 196 issue: 2 year: 2019 ident: 9967_CR71 publication-title: Remote Sens doi: 10.3390/rs11020196 – volume: 107 start-page: 102928 year: 2019 ident: 9967_CR123 publication-title: Autom Construct doi: 10.1016/j.autcon.2019.102928 – volume: 188 start-page: 104458 year: 2020 ident: 9967_CR167 publication-title: CATENA doi: 10.1016/j.catena.2020.104458 – volume: 25 start-page: 1212 issue: 6 year: 2018 ident: 9967_CR60 publication-title: Saudi J biol sci doi: 10.1016/j.sjbs.2017.11.022 – volume: 19 start-page: 301 issue: 4 year: 1997 ident: 9967_CR218 publication-title: Decis Support Syst doi: 10.1016/S0167-9236(96)00070-X – volume: 133 start-page: 104312 year: 2019 ident: 9967_CR82 publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.104312 – volume: 187 start-page: 106742 year: 2020 ident: 9967_CR102 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.106742 – ident: 9967_CR198 doi: 10.1109/ICDAR.2003.1227801 – volume: 77 start-page: 188 year: 2018 ident: 9967_CR26 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.04.007 – ident: 9967_CR79 doi: 10.3390/rs9121220 – volume: 17 start-page: 2231 issue: 9 year: 2020 ident: 9967_CR206 publication-title: Landslides doi: 10.1007/s10346-020-01453-z – ident: 9967_CR15 doi: 10.1016/B978-012161964-0/50007-8 – volume: 35 start-page: 2279 issue: 10 year: 2002 ident: 9967_CR49 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00178-9 – volume: 8 start-page: 47209 year: 2020 ident: 9967_CR48 publication-title: Access doi: 10.1109/ACCESS.2020.2976910 – volume: 27 start-page: 1056 issue: 12 year: 2007 ident: 9967_CR16 publication-title: Soil Dynam Earthquake Eng doi: 10.1016/j.soildyn.2007.03.007 – ident: 9967_CR180 – volume: 29 start-page: 04014078 issue: 3 year: 2015 ident: 9967_CR29 publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0000557 – volume: 15 start-page: 831 issue: 5 year: 2011 ident: 9967_CR157 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-011-1154-4 – volume: 32 start-page: 1059 issue: 6 year: 1995 ident: 9967_CR73 publication-title: Can Geotech J doi: 10.1139/t95-103 – volume: 32 start-page: 495 year: 2020 ident: 9967_CR156 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04109-9 – volume: 93 start-page: 103094 year: 2019 ident: 9967_CR219 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.103094 – volume: 8 start-page: 170939 year: 2020 ident: 9967_CR196 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022786 – volume-title: Lion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District year: 2020 ident: 9967_CR202 doi: 10.1155/2020/8685724 – volume: 262 start-page: 105307 year: 2019 ident: 9967_CR161 publication-title: Eng Geol doi: 10.1016/j.enggeo.2019.105307 – volume: 188 start-page: 29 year: 2015 ident: 9967_CR236 publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.01.009 – volume: 399 start-page: 227 year: 2020 ident: 9967_CR209 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.040 – ident: 9967_CR40 doi: 10.1007/978-3-642-05253-8_40 – volume: 15 start-page: 11 issue: 1 year: 2002 ident: 9967_CR133 publication-title: Neural netw doi: 10.1016/S0893-6080(01)00111-3 – volume: 34 start-page: 713 issue: 8 year: 2019 ident: 9967_CR13 publication-title: Comput-Aided Civil Infrastruct Eng doi: 10.1111/mice.12440 – volume: 77 start-page: 166 year: 2018 ident: 9967_CR93 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.04.002 – volume: 11 start-page: 739 issue: 3 year: 2020 ident: 9967_CR101 publication-title: Geosci Front doi: 10.1016/j.gsf.2019.10.004 – volume: 14 start-page: 241 year: 2020 ident: 9967_CR47 publication-title: Front Comput Sci doi: 10.1007/s11704-019-8208-z – ident: 9967_CR87 doi: 10.1109/CVPR.2016.90 – ident: 9967_CR86 doi: 10.1109/ICCV.2015.123 – volume: 48 start-page: 82 year: 2013 ident: 9967_CR233 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2012.09.016 – volume: 170 start-page: 1 year: 2014 ident: 9967_CR72 publication-title: Eng Geol doi: 10.1016/j.enggeo.2013.12.003 – volume: 32 start-page: 333 year: 2012 ident: 9967_CR38 publication-title: Neural networks doi: 10.1016/j.neunet.2012.02.023 – ident: 9967_CR125 doi: 10.1109/CVPR.2015.7299170 |
SSID | ssj0005243 |
Score | 2.6748464 |
Snippet | With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5633 |
SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Computational linguistics Computer Science Data mining Deep learning Engineering Generative adversarial networks Geotechnical engineering Geotechnology Language processing Machine learning Natural language interfaces Neural networks Recurrent neural networks |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SL158i9UqOQgedGEfea23IhYR9GShByEk2aQt1La06_93spu19QmeNzu7zGQyM-SbbxC6oIktRJHkEeVORCTxIACV6EhYSCfy2BlXgccfn9h9nzwM6CA0hS0btHtzJVmd1GvNboSlkYcUQFYD7g01zyaF2t0Dufppdw3YUWPlUpZHUFAkoVXmZxmfwtHXQ_nb7WgVdHq7aDtki7hbm3cPbdjpPtppJjHg4JgH6KW7uofGM4cLa-c4DIQYYjUZzhbjcvS6xOMpHtpZTdwK1sF2RUd4gxVejiAbxyaMP8B1X8sh6vfunm_vozA3ITIkJWUEIYfZXDEDqUNuCBexYYXgximorbQRorA01cJwlWnwSRVzx3XOiBIxjVOdZEeoNZ1N7THCmrkcSi5fBWbEEqezjPOYugIEOJqRNkoa9UkTSMX9bIuJXNEhe5VLULmsVC6TNrr6eGdeU2r8ufrSW0V6fwPJRoW2Afg_z1wluxBcPUs94W3UaQwngyMuZUpFlZIQ1kbXjTFXj3__7sn_lp-irdRvqwro0kGtcvFmzyBdKfV5tTvfAUV93lI priority: 102 providerName: Springer Nature |
Title | Application of deep learning algorithms in geotechnical engineering: a short critical review |
URI | https://link.springer.com/article/10.1007/s10462-021-09967-1 https://www.proquest.com/docview/2588185346 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH9i7QUOfAwQHaPyAYkDWMSJYztcUEDtJtAGQlQaEpJlO3aHNNqOlv-f58QhA8QuOeTjJfHP78t-HwBPS-Yb1bCKljIoylkMAjDMUuXRnKiy4EIbPH5yKo4X_N1ZeZYW3LYprLKXia2gbtYurpG_zEvV6hYuXm8uaewaFXdXUwuNPRijCFZqBOM3s9OPn64EeXRxc7moKDoXLKXNpOQ5LnIaQxTQSkJxwf5QTX8L6H92SlsFNL8Lt5PlSOoO6ntww6_24U7flYEkJt2HW1dKDN6Hr_WwQ03WgTTeb0hqFbEk5mKJ_7g7_74l31Zk6dddSVfEjfiByitiyPYc7XTiUmME0mW8PIDFfPb57TFNHRWo4znfURwj4SsjHBoVleNSZU40Srpg0OuyTqnGl7lVTprCIreaTAZpK8GNysost6x4CKPVeuUfAbEiVOiMRf-w4J4HWxRSZmVokEBAmCbA-sHULpUbj10vLvRQKDkCoBEA3QKg2QSe_35m0xXbuPbuZxEjHTkRKTuTEgrw-2JNK12j2o3167mcwGEPo04sutXDhJrAix7a4fL_33twPbXHcDOPk6oNeTmE0e7HT_8EDZedncKemh9NYVwffXk_m6a5imdP2Ac8LvL6F4qW67E |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOBQqILQV8AHGAiNhxbAcJoRWwbOnj1Eo9IBnbsbdI7e62uxXiT_EbGScOKSB66znJJPL3eR7xPACeldTXqqZVVsqgMk5jEoChNlMe3YkqDy40yeO7e2J8wD8flocr8LOrhYlplZ1ObBR1PXPxH_lrVqrGtnDxbn6axalR8XS1G6HR0mLb__iOIdvi7dYHxPc5Y6OP--_HWZoqkDnO-DJDhSx8ZYRDw1o5LlXuRK2kCwYjD-uUqn3JrHLSFBYZa3IZpK0ENyovc2ZpgXKvwXVeoCWPlemjTxdSStosPSaqDEMZmop0UqkeFyyLCRHok6Fyon8Ywr_NwT_nso25G92BteSnkmFLrLuw4qfrcLubAUGSSliHWxcaGt6DL8P-PJzMAqm9n5M0mGJCzPEEV3R5dLIg36Zk4mdtA1lkCfG9lDfEkMURRgXEpTEMpK2vuQ8HV7LSD2B1Opv6h0CsCBWGfjEaLbjnwRaFlHkZahQQkBQDoN1iapeam8cZG8e6b8scAdAIgG4A0HQAL38_M29be1x694uIkY77HiU7k8oX8PtiBy09RCMfu-VzOYDNDkadFMJC9_QdwKsO2v7y_9-7cbm0p3BjvL-7o3e29rYfwU0WCdYk22zC6vLs3D9Gl2lpnzQ8JfD1qjfGL5CTIhU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKOAWCjgA4gDWI0dJ3aQEFpoVy2FVYWo1AOSsR17i1R2F3YR4q_x6xgnDikgeus5ySTyfJ5H_M0MwMOC-VrVrKKFDIoKFkkAhlmqPIYTVRZcaMjjbyfl7qF4fVQcrcHPrhYm0io7m9gY6nru4j_yLV6oxreIciskWsTB9vjF4guNE6TiSWs3TqOFyL7_8R3Tt-XzvW3U9SPOxzvvX-3SNGGAOsHFiqJxLn1lSodOtnJCqsyVtZIuGMxCrFOq9gW3ykmTW0SvyWSQtiqFUVmRcctylHsB1mXMigaw_nJncvDuFMGk5ezxsqKY2LBUspMK90TJaaRHYISGpor94Rb_dg7_nNI2zm98Da6kqJWMWphdhzU_24Cr3UQIkgzEBlw-1d7wBnwY9afjZB5I7f2CpDEVU2JOprimq-PPS_JpRqZ-3raTRcwQ30t5RgxZHmOOQFwaykDaapubcHgua30LBrP5zN8GYstQYSIYc9NceBFsnkuZFaFGAQEhMgTWLaZ2qdV5nLhxovsmzVEBGhWgGwVoNoQnv59ZtI0-zrz7cdSRjlYAJTuTihnw-2I_LT1Clx975ws5hM1OjTqZh6XuwTyEp51q-8v_f--ds6U9gIu4KfSbvcn-XbjEI74a5s0mDFZfv_l7GD-t7P0EVAIfz3tv_AI0lien |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+algorithms+in+geotechnical+engineering%3A+a+short+critical+review&rft.jtitle=The+Artificial+intelligence+review&rft.au=Zhang%2C+Wengang&rft.au=Li%2C+Hongrui&rft.au=Li%2C+Yongqin&rft.au=Liu%2C+Hanlong&rft.date=2021-12-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=54&rft.issue=8&rft.spage=5633&rft.epage=5673&rft_id=info:doi/10.1007%2Fs10462-021-09967-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_021_09967_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |