Feasibility of acrylic acid production by fermentation

Acrylic acid might become an important target for fermentative production from sugars on bulk industrial scale, as an alternative to its current production from petrochemicals. Metabolic engineering approaches will be required to develop a host microorganism that may enable such a fermentation proce...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 67; no. 6; pp. 727 - 734
Main Authors STRAATHOF, Adrie J. J, SIE, Susana, FRANCO, Telma T, VAN DER WIELEN, Luuk A. M
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.06.2005
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Acrylic acid might become an important target for fermentative production from sugars on bulk industrial scale, as an alternative to its current production from petrochemicals. Metabolic engineering approaches will be required to develop a host microorganism that may enable such a fermentation process. Hypothetical metabolic pathways for insertion into a host organism are discussed. The pathway should have plausible mass and redox balances, plausible biochemistry, and plausible energetics, while giving the theoretically maximum yield of acrylate on glucose without the use of aeration or added electron acceptors. Candidate metabolic pathways that might lead to the theoretically maximum yield proceed via beta-alanine, methylcitrate, or methylmalonate-CoA. The energetics and enzymology of these pathways, including product excretion, should be studied in more detail to confirm this. Expression of the selected pathway in a host organism will require extensive genetic engineering. A 100,000-tons/year fermentation process for acrylic acid production, including product recovery, was conceptually designed based on the supposition that an efficient host organism for acrylic acid production can indeed be developed. The designed process is economically competitive when compared to the current petrochemical process for acrylic acid. Although the designed process is highly speculative, it provides a clear incentive for development of the required microbial host, especially considering the environmental sustainability of the designed process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-005-1942-1