Hydrodynamics and stability of galactic cooling flows
Using numerical techniques we study the global stability of cooling flows in X-ray luminous giant elliptical galaxies. As an unperturbed equilibrium state we choose the hydrostatic gas recycling model. Non-equilibrium radiative cooling, stellar mass loss, heating by type Ia supernovae, distributed m...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 301; no. 2; pp. 343 - 356 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, U.K. and Cambridge, USA
Blackwell Science Ltd
01.12.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Using numerical techniques we study the global stability of cooling flows in X-ray luminous giant elliptical galaxies. As an unperturbed equilibrium state we choose the hydrostatic gas recycling model. Non-equilibrium radiative cooling, stellar mass loss, heating by type Ia supernovae, distributed mass deposition and thermal conductivity are included. Although the recycling model reproduces the basic X-ray observables, it appears to be unstable with respect to the development of inflow or outflow. In spherical symmetry the inflows are subject to a central cooling catastrophe, while the outflows saturate in a form of a subsonic galactic wind. Two-dimensional axisymmetric random velocity perturbations of the equilibrium model trigger the onset of a cooling catastrophe, which develops in an essentially non-spherical way. The simulations show a patchy pattern of mass deposition and the formation of hollow gas jets, which penetrate through the outflow down to the galaxy core. The X-ray observables of such a hybrid gas flow mimic those of the equilibrium recycling model, but the gas temperature exhibits a central depression. The mass deposition rate M consists of two contributions of similar size: (i) a hydrostatic one resembling that of the equilibrium model, and (ii) a dynamical one which is related to the jets and is more concentrated towards the centre. For a model galaxy, like NGC 4472, our 2D simulations predict M ≈ 2 M⊙ yr−1 within the cooling radius for the advanced non-linear stage of the instability. We discuss the implications of these results to Hα nebulae and star formation in cooling flow galaxies and emphasize the need for high-resolution 3D simulations. |
---|---|
Bibliography: | istex:75ED1FF33D1428CE7BB363CFFEA7E6EC768B3E4D ark:/67375/HXZ-MGX532HV-7 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1046/j.1365-8711.1998.01897.x |