Nuclear Translocation Uncovers the Amyloid Peptide Aβ42 as a Regulator of Gene Transcription

Although soluble species of the amyloid-β peptide Aβ42 correlate with disease symptoms in Alzheimer disease, little is known about the biological activities of amyloid-β (Aβ). Here, we show that Aβ peptides varying in lengths from 38 to 43 amino acids are internalized by cultured neuroblastoma cells...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 289; no. 29; pp. 20182 - 20191
Main Authors Barucker, Christian, Harmeier, Anja, Weiske, Joerg, Fauler, Beatrix, Albring, Kai Frederik, Prokop, Stefan, Hildebrand, Peter, Lurz, Rudi, Heppner, Frank L., Huber, Otmar, Multhaup, Gerhard
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.07.2014
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although soluble species of the amyloid-β peptide Aβ42 correlate with disease symptoms in Alzheimer disease, little is known about the biological activities of amyloid-β (Aβ). Here, we show that Aβ peptides varying in lengths from 38 to 43 amino acids are internalized by cultured neuroblastoma cells and can be found in the nucleus. By three independent methods, we demonstrate direct detection of nuclear Aβ42 as follows: (i) biochemical analysis of nuclear fractions; (ii) detection of biotin-labeled Aβ in living cells by confocal laser scanning microscopy; and (iii) transmission electron microscopy of Aβ in cultured cells, as well as brain tissue of wild-type and transgenic APPPS1 mice (overexpression of amyloid precursor protein and presenilin 1 with Swedish and L166P mutations, respectively). Also, this study details a novel role for Aβ42 in nuclear signaling, distinct from the amyloid precursor protein intracellular domain. Chromatin immunoprecipitation showed that Aβ42 specifically interacts as a repressor of gene transcription with LRP1 and KAI1 promoters. By quantitative RT-PCR, we confirmed that mRNA levels of the examined candidate genes were exclusively decreased by the potentially neurotoxic Aβ42 wild-type peptide. Shorter peptides (Aβ38 or Aβ40) and other longer peptides (nontoxic Aβ42 G33A substitution or Aβ43) did not affect mRNA levels. Overall, our data indicate that the nuclear translocation of Aβ42 impacts gene regulation, and deleterious effects of Aβ42 in Alzheimer disease pathogenesis may be influenced by altering the expression profiles of disease-modifying genes. Background: Biological activities of nontoxic Aβ42 peptides remain unclear in Alzheimer disease. Results: Aβ species are taken up in the nucleus of cells by a nonregulated mechanism, but only Aβ42 plays a role in gene transcription. Conclusion: Aβ42 may act as a transcriptional regulator, similar to the cytoplasmic fragment AICD. Significance: Genes regulated by nuclear Aβ42 could represent alternative targets for therapeutic approaches.
Bibliography:Present address: Bayer Pharma AG, 13353 Berlin, Germany.
Present address: F. Hoffmann-La Roche AG, Pharma Research and Early Development, Discovery and Translational Area Neuroscience Basel, 4070 Basel, Switzerland.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M114.564690