An embodied account of serial order: How instabilities drive sequence generation
Learning and generating serially ordered sequences of actions is a core component of cognition both in organisms and in artificial cognitive systems. When these systems are embodied and situated in partially unknown environments, specific constraints arise for any neural mechanism of sequence genera...
Saved in:
Published in | Neural networks Vol. 23; no. 10; pp. 1164 - 1179 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Learning and generating serially ordered sequences of actions is a core component of cognition both in organisms and in artificial cognitive systems. When these systems are embodied and situated in partially unknown environments, specific constraints arise for any neural mechanism of sequence generation. In particular, sequential action must resist fluctuating sensory information and be capable of generating sequences in which the individual actions may vary unpredictably in duration. We provide a solution to this problem within the framework of Dynamic Field Theory by proposing an architecture in which dynamic neural networks create stable states at each stage of a sequence. These neural attractors are destabilized in a cascade of bifurcations triggered by a neural representation of a condition of satisfaction for each action. We implement the architecture on a robotic vehicle in a color search task, demonstrating both sequence learning and sequence generation on the basis of low-level sensory information. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2010.07.012 |