Effect of interface roughness on the carrier transport in germanium MOSFETs investigated by Monte Carlo method

Interface roughness strongly influences the performance of germanium metal-organic-semiconductor field effect transistors (MOSFETs). In this paper, a 2D full-band Monte Carlo simulator is used to study the impact of interface roughness scattering on electron and hole transport properties in long- an...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 19; no. 5; pp. 536 - 541
Main Author 杜刚 刘晓彦 夏志良 杨竞峰 韩汝琦
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.05.2010
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/19/5/057304

Cover

Loading…
More Information
Summary:Interface roughness strongly influences the performance of germanium metal-organic-semiconductor field effect transistors (MOSFETs). In this paper, a 2D full-band Monte Carlo simulator is used to study the impact of interface roughness scattering on electron and hole transport properties in long- and short- channel Ge MOSFETs inversion layers. The carrier effective mobility in the channel of Ge MOSFETs and the in non-equilibriurn transport properties are investigated. Results show that both electron and hole mobility are strongly influenced by interface roughness scattering. The output curves for 50 nm channel-length double gate n and p Ge MOSFET show that the drive currents of n- and p-Ge MOSFETs have significant improvement compared with that of Si n- and p-MOSFETs with smooth interface between channel and gate dielectric. The 82% and 96% drive current enhancement are obtained for the n- and p-MOSFETs with the completely smooth interface. However, the enhancement decreases sharply with the increase of interface roughness. With the very rough interface, the drive currents of Ge MOSFETs are even less than that of Si MOSFETs. Moreover, the significant velocity overshoot also has been found in Ge MOSFETs.
Bibliography:carrier transport, interface scattering, germanium MOSFETs, Monte Carlo
TN386.1
O484
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/19/5/057304