Simulation of the potential impacts of lakes on glacier behavior over the Tibetan Plateau in summer

Known as “Asian Water Tower”, the Tibetan Plateau (TP) contains the largest glacierized area outside the polar regions and contains more than half of China’s lakes. However, these glaciers are retreating rapidly under the influence of global warming. Many studies have attempted to explain the spatia...

Full description

Saved in:
Bibliographic Details
Published inClimate dynamics Vol. 60; no. 11-12; pp. 3435 - 3454
Main Authors Su, Dongsheng, Wen, Lijuan, Huang, Anning, Wu, Yang, Gao, Xiaoqing, Wang, Mengxiao, Zhao, Yixin, Kirillin, Georgiy
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Known as “Asian Water Tower”, the Tibetan Plateau (TP) contains the largest glacierized area outside the polar regions and contains more than half of China’s lakes. However, these glaciers are retreating rapidly under the influence of global warming. Many studies have attempted to explain the spatial heterogeneity of glacier retreat in the TP and its impacts on local lakes, but few studies have focused on the feedback of lakes on glaciers, especially in summer with intense lake effects and glacier ablation. Using an air-lake coupled model, the potential summer climatic impacts of the lake clusters on glacier behavior over TP are investigated based on two experiments with and without the lakes. Away from the lake-rich area of Inner TP, glaciers along the Himalayas are retreating rapidly with climate warming. The most pronounced glacier ablation occurs in southeastern TP, where TP lakes reduce snowfall. However, in the Inner TP, the influence of climate warming on glaciers is partially offset by the lakes through different lake-related mechanisms. The glaciers on the Western Nyainqentanglha Range are preserved mainly by the local cooling and snowfall-increase caused by nearby Nam Co. In turn, the numerous small lakes in the Eastern Inner TP exert a cumulative effect on preserving the glaciers through cooling and moistening the atmospheric boundary layer and thus increasing snowfall. The glaciers in the western Kunlun Mountains benefit from the large-scale impacts of the TP lakes, which intensified westerlies and lead to regional temperature decrease and snowfall increase.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-022-06517-5