An integrated theoretical and experimental investigation of insensitive munition compounds adsorption on cellulose,cellulose triacetate, chitin and chitosan surfaces

This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole(DNAN), triaminotrinitrobenzene(TATB), 1,1-diamino-2,2-dinitroethene(FOX-7) and nitroguanidine(NQ), and traditional munition compound 2,4,6-trin...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 64; no. 2; pp. 174 - 180
Main Authors Gurtowski, Luke A., Griggs, Chris S., Gude, Veera G., Shukla, Manoj K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole(DNAN), triaminotrinitrobenzene(TATB), 1,1-diamino-2,2-dinitroethene(FOX-7) and nitroguanidine(NQ), and traditional munition compound 2,4,6-trinitrotoluene(TNT) on the surfaces of cellulose, cellulose triacetate, chitin and chitosan biopolymers. Cellulose,cellulose triacetate, chitin and chitosan were modeled as trimeric form of the linear chain of4 C1 chair conformation of β-D-glucopyranos, its triacetate form, β-N-acetylglucosamine and D-glucosamine, respectively, in the 1 ? 4 linkage. Geometries were optimized at the M062 X functional level of the density functional theory(DFT) using the 6-31 G(d,p) basis set in the gas phase and in the bulk water solution using the conductor-like polarizable continuum model(CPCM) approach. The nature of potential energy surfaces of the optimized geometries were ascertained through the harmonic vibrational frequency analysis. The basis set superposition error(BSSE) corrected interaction energies were obtained using the 6-311 G(d,p)basis set at the same theoretical level. The computed BSSE in the gas phase was used to correct interaction energy in the bulk water solution. Computed and experimental results regarding the ability of considered surfaces in adsorbing the insensitive munitions compounds are discussed.
Bibliography:This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole(DNAN), triaminotrinitrobenzene(TATB), 1,1-diamino-2,2-dinitroethene(FOX-7) and nitroguanidine(NQ), and traditional munition compound 2,4,6-trinitrotoluene(TNT) on the surfaces of cellulose, cellulose triacetate, chitin and chitosan biopolymers. Cellulose,cellulose triacetate, chitin and chitosan were modeled as trimeric form of the linear chain of4 C1 chair conformation of β-D-glucopyranos, its triacetate form, β-N-acetylglucosamine and D-glucosamine, respectively, in the 1 ? 4 linkage. Geometries were optimized at the M062 X functional level of the density functional theory(DFT) using the 6-31 G(d,p) basis set in the gas phase and in the bulk water solution using the conductor-like polarizable continuum model(CPCM) approach. The nature of potential energy surfaces of the optimized geometries were ascertained through the harmonic vibrational frequency analysis. The basis set superposition error(BSSE) corrected interaction energies were obtained using the 6-311 G(d,p)basis set at the same theoretical level. The computed BSSE in the gas phase was used to correct interaction energy in the bulk water solution. Computed and experimental results regarding the ability of considered surfaces in adsorbing the insensitive munitions compounds are discussed.
Cellulose;Cellulose triacetate;Chitin;Chitosan;2,4-Dinitroanisole(DNAN);Triaminotrinitrobenzene(TATB);1,1-Diamino-2,2-dinitroethene(FOX-7);Nitroguanidine(NQ)
11-2629/X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2017.06.012