Anti-inflammatory effect of oleuropein on microglia through regulation of Drp1-dependent mitochondrial fission
Abstract Oleuropein is a primary phenolic compound found in olive leaf and Fraxinus rhynchophylla . Here, we investigated the impact of oleuropein on LPS-induced BV-2 microglial cells. Oleuropein suppressed the LPS-induced increase in pro-inflammatory mediators, such as nitric oxide, and pro-inflamm...
Saved in:
Published in | Journal of neuroimmunology Vol. 306; pp. 46 - 52 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Oleuropein is a primary phenolic compound found in olive leaf and Fraxinus rhynchophylla . Here, we investigated the impact of oleuropein on LPS-induced BV-2 microglial cells. Oleuropein suppressed the LPS-induced increase in pro-inflammatory mediators, such as nitric oxide, and pro-inflammatory cytokines, via inhibition of ERK/p38/NF-κB activation and reactive oxygen species (ROS) generation. Furthermore, it suppressed LPS-induced excessive mitochondrial fission, which regulates mitochondrial ROS generation and pro-inflammatory response by diminishing Drp1 dephosphorylation. Collectively, we demonstrated that oleuropein suppresses pro-inflammatory response of microglia by inhibiting Drp1-dependent mitochondrial fission. Our findings suggest a potential role of oleuropein in microglial inflammation-mediated neurodegenerative disorders. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0165-5728 1872-8421 |
DOI: | 10.1016/j.jneuroim.2017.02.019 |