Bmi-1 regulates self-renewal, proliferation and senescence of human fetal neural stem cells in vitro

Knockout and knockdown studies have shown that the polycomb gene Bmi-1 is important for mouse postnatal and prenatal neural stem cells (NSCs) self-renewal and proliferation. Different downstream targets of Bmi-1 gene have been identified in mouse, including Ink4a/Arf locus in adult NSCs and p21 gene...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience letters Vol. 476; no. 2; pp. 74 - 78
Main Authors Wang, Yang, Guan, Yunqian, Wang, Fang, Huang, Aihua, Wang, Shuyan, Zhang, Y. Alex
Format Journal Article
LanguageEnglish
Published Shannon Elsevier Ireland Ltd 31.05.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Knockout and knockdown studies have shown that the polycomb gene Bmi-1 is important for mouse postnatal and prenatal neural stem cells (NSCs) self-renewal and proliferation. Different downstream targets of Bmi-1 gene have been identified in mouse, including Ink4a/Arf locus in adult NSCs and p21 gene in embryonic NSCs. However, little is known regarding the role of Bmi-1 in human NSCs. Here, using lentiviral-delivered shRNA knockdown and over-expression techniques, we examined whether Bmi-1 is required for the self-renewal and proliferation of human fetal NSCs (hfNSCs) in vitro. Our results showed that shRNA-mediated Bmi-1 reduction profoundly impaired hfNSCs self-renewal and proliferation, whereas Bmi-1 over-expression promoted hfNSCs self-renewal capacity. Interestingly, different from mouse embryonic NSCs, Bmi-1 repressed Ink4a/Arf locus instead of p21 gene in human fetal NSCs. Moreover, Bmi-1 knockdown induced obvious senescence phenotype in hfNSCs. Further studies on the Bmi-1 pathways would help to understand the molecular mechanisms underlying hfNSCs self-renewal and human brain development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3940
1872-7972
DOI:10.1016/j.neulet.2010.04.006