Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods

In this paper, we study alternating direction methods for solving constrained total-variation image restoration and reconstruction problems. Alternating direction methods can be implementable variants of the classical augmented Lagrangian method for optimization problems with separable structures an...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on scientific computing Vol. 32; no. 5; pp. 2710 - 2736
Main Authors Ng, Michael K, Weiss, Pierre, Yuan, Xiaoming
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we study alternating direction methods for solving constrained total-variation image restoration and reconstruction problems. Alternating direction methods can be implementable variants of the classical augmented Lagrangian method for optimization problems with separable structures and linear constraints. The proposed framework allows us to solve problems of image restoration, impulse noise removal, inpainting, and image cartoon+texture decomposition. As the constrained model is employed, we need only to input the noise level, and the estimation of the regularization parameter is not required in these imaging problems. Experimental results for such imaging problems are presented to illustrate the effectiveness of the proposed method. We show that the alternating direction method is very efficient for solving image restoration and reconstruction problems. [PUBLICATION ABSTRACT]
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1064-8275
1095-7197
DOI:10.1137/090774823