Effect of Pt and Pd promoter on Ni supported catalysts—A TPR/TPO/TPD and microcalorimetry study
The promoting effect of Pt and Pd in bimetallic Ni–Pt and Ni–Pd catalysts supported on alumina nano-fibre (Alnf) were tested for the liquid phase reforming of sorbitol to produce hydrogen. The mono- and bimetallic catalysts were studied by different characterisation techniques such as: temperature p...
Saved in:
Published in | Journal of catalysis Vol. 258; no. 2; pp. 366 - 377 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
10.09.2008
Elsevier Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The promoting effect of Pt and Pd in bimetallic Ni–Pt and Ni–Pd catalysts supported on alumina nano-fibre (Alnf) were tested for the liquid phase reforming of sorbitol to produce hydrogen. The mono- and bimetallic catalysts were studied by different characterisation techniques such as: temperature programmed reduction, oxidation, CO desorption, microcalorimetry, TEM and STEM/EDX. Although bimetallic catalysts have long been the subject of great interest because of their exceptional properties compared to the monometallic catalysts, the reason behind their improved activity is still a question of debate. Experimental evidence showed that the addition of both Pt and Pd—even in a very small fraction—to the Ni catalyst increases its reducibility significantly. The TEM and STEM/EDX analysis confirmed that Pt and Ni are present as alloys in nano-sized rod shaped particles. At the same time it was found that the CO differential heat of adsorption is appreciably lowered in the bimetallic catalysts. This is substantial because reducing the CO binding strength can avoid the poisoning of the active metal sites. As a result, we demonstrate that the rate of H
2 formation from sorbitol reforming was 3 to 5 times higher for bimetallic catalysts when compared to the monometallic catalysts. |
---|---|
AbstractList | The promoting effect of Pt and Pd in bimetallic Ni–Pt and Ni–Pd catalysts supported on alumina nano-fibre (Alnf) were tested for the liquid phase reforming of sorbitol to produce hydrogen. The mono- and bimetallic catalysts were studied by different characterisation techniques such as: temperature programmed reduction, oxidation, CO desorption, microcalorimetry, TEM and STEM/EDX. Although bimetallic catalysts have long been the subject of great interest because of their exceptional properties compared to the monometallic catalysts, the reason behind their improved activity is still a question of debate. Experimental evidence showed that the addition of both Pt and Pd—even in a very small fraction—to the Ni catalyst increases its reducibility significantly. The TEM and STEM/EDX analysis confirmed that Pt and Ni are present as alloys in nano-sized rod shaped particles. At the same time it was found that the CO differential heat of adsorption is appreciably lowered in the bimetallic catalysts. This is substantial because reducing the CO binding strength can avoid the poisoning of the active metal sites. As a result, we demonstrate that the rate of H
2 formation from sorbitol reforming was 3 to 5 times higher for bimetallic catalysts when compared to the monometallic catalysts. The promoting effect of Pt and Pd in bimetallic Ni-Pt and Ni-Pd catalysts supported on alumina nano-fibre (Alnf) were tested for the liquid phase reforming of sorbitol to produce hydrogen. The mono- and bimetallic catalysts were studied by different characterisation techniques such as: temperature programmed reduction, oxidation, CO desorption, microcalorimetry, TEM and STEM/EDX. Although bimetallic catalysts have long been the subject of great interest because of their exceptional properties compared to the monometallic catalysts, the reason behind their improved activity is still a question of debate. Experimental evidence showed that the addition of both Pt and Pd--even in a very small fraction--to the Ni catalyst increases its reducibility significantly. The TEM and STEM/EDX analysis confirmed that Pt and Ni are present as alloys in nano-sized rod shaped particles. At the same time it was found that the CO differential heat of adsorption is appreciably lowered in the bimetallic catalysts. This is substantial because reducing the CO binding strength can avoid the poisoning of the active metal sites. As a result, we demonstrate that the rate of H2 formation from sorbitol reforming was 3 to 5 times higher for bimetallic catalysts when compared to the monometallic catalysts. [PUBLICATION ABSTRACT] |
Author | Beltramini, J.N. Lu, G.Q. Dumesic, J.A. Tanksale, A. |
Author_xml | – sequence: 1 givenname: A. surname: Tanksale fullname: Tanksale, A. organization: ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Brisbane, Queensland 4072, Australia – sequence: 2 givenname: J.N. surname: Beltramini fullname: Beltramini, J.N. email: jorgeb@uq.edu.au organization: ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Brisbane, Queensland 4072, Australia – sequence: 3 givenname: J.A. surname: Dumesic fullname: Dumesic, J.A. organization: Chemical and Biological Engineering Department, University of Wisconsin, Madison, WI 53706, USA – sequence: 4 givenname: G.Q. surname: Lu fullname: Lu, G.Q. organization: ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Brisbane, Queensland 4072, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20628512$$DView record in Pascal Francis |
BookMark | eNp9kctKAzEUhoMoWC8v4CoILmeapJM0ATei9QJii9R1yOQCGdpJTVKhOx_CJ_RJTK1uXHggnM3_nfOfP0dgvw-9BeAMoxojzIZd3WmVa4IQrxGrEWn2wAAjgSrCRLMPBggRXAmKx4fgKKUOIYwp5QOgJs5ZnWFwcJah6g2cGbiKYRmyjTD08MnDtF6tQszWwLJDLTYpp8_3jys4nz0P57NpeTff5NLrGLRahOiXNscNTHltNifgwKlFsqc__Ri83E7m1_fV4_Tu4frqsdINGeVKida6kbNEY9ZQwRpsuXLjxuiWcz3GBFvnFBsL1oqWaqE5VYYZzpq2lKGjY3C-m1vcv65tyrIL69iXlRIL2lCCyKiILn5EKhWnLqpe-yRXxbGKG0kQI5xiUnR8pysXpRStk9pnlX3oc1R-ITGS29xlJ7e5y23uEjFZci8o-YP-Tv8XutxBtiT05m2USXvba2t8LN8jTfD_4V98L582 |
CODEN | JCTLA5 |
CitedBy_id | crossref_primary_10_1016_j_apcata_2016_02_024 crossref_primary_10_1021_acs_chemrev_6b00099 crossref_primary_10_1016_j_cattod_2021_11_015 crossref_primary_10_1039_D3NJ01082A crossref_primary_10_1016_j_apcatb_2016_06_042 crossref_primary_10_1016_j_apcata_2013_06_039 crossref_primary_10_1016_j_ijhydene_2017_11_089 crossref_primary_10_1016_j_biortech_2016_05_038 crossref_primary_10_1016_j_fuel_2011_12_055 crossref_primary_10_1002_cctc_201901966 crossref_primary_10_1016_j_mcat_2021_111604 crossref_primary_10_1016_j_cej_2016_10_032 crossref_primary_10_1002_cnma_202400460 crossref_primary_10_1016_j_apcata_2009_01_038 crossref_primary_10_1016_j_apcatb_2015_06_032 crossref_primary_10_1007_s12209_018_0175_1 crossref_primary_10_1007_s11244_014_0271_y crossref_primary_10_1016_j_renene_2022_06_065 crossref_primary_10_1002_chem_202101087 crossref_primary_10_1002_cjce_23458 crossref_primary_10_1007_s10973_008_9547_4 crossref_primary_10_1016_j_apcata_2015_05_006 crossref_primary_10_1021_acs_iecr_6b01581 crossref_primary_10_1016_j_fuproc_2022_107628 crossref_primary_10_1016_j_fuel_2022_124082 crossref_primary_10_1016_j_jcis_2020_10_117 crossref_primary_10_1021_acs_iecr_3c00941 crossref_primary_10_1039_c2cy20119d crossref_primary_10_1007_s10847_009_9618_6 crossref_primary_10_1002_elan_201300569 crossref_primary_10_1016_j_ijhydene_2022_12_340 crossref_primary_10_1016_j_jcat_2021_08_031 crossref_primary_10_1016_j_apcatb_2012_06_024 crossref_primary_10_1016_j_jcat_2016_01_023 crossref_primary_10_1016_j_jnucmat_2017_03_051 crossref_primary_10_1016_j_fuel_2014_11_033 crossref_primary_10_1039_C8SE00576A crossref_primary_10_1016_j_apcata_2017_10_004 crossref_primary_10_1016_j_cej_2024_155907 crossref_primary_10_1021_ie301399z crossref_primary_10_1039_C5GC00599J crossref_primary_10_1007_s11814_011_0170_x crossref_primary_10_1007_s10311_023_01643_w crossref_primary_10_1021_nn403793a crossref_primary_10_1016_j_jiec_2017_09_024 crossref_primary_10_1021_acsami_2c22565 crossref_primary_10_1039_C7CY02440A crossref_primary_10_1016_j_est_2024_114912 crossref_primary_10_1016_j_ijhydene_2022_07_020 crossref_primary_10_1016_j_fuel_2022_127047 crossref_primary_10_1016_j_apcata_2009_06_039 crossref_primary_10_1021_cr300096b crossref_primary_10_1002_aic_16917 crossref_primary_10_1021_cs501265b crossref_primary_10_1016_j_apcata_2019_117182 crossref_primary_10_1016_j_jcat_2013_03_002 crossref_primary_10_1002_cctc_201500029 crossref_primary_10_1039_C7RA12891F crossref_primary_10_1016_j_apcatb_2019_03_082 crossref_primary_10_1016_j_ijhydene_2011_11_097 crossref_primary_10_1016_j_catcom_2013_02_009 crossref_primary_10_1039_c0jm02549f crossref_primary_10_1016_j_apcatb_2017_06_059 crossref_primary_10_1021_acscatal_9b04063 crossref_primary_10_1016_j_apcata_2014_11_037 crossref_primary_10_1016_j_apcata_2020_117811 crossref_primary_10_1039_c2cs35296f crossref_primary_10_1016_j_ijhydene_2023_04_120 crossref_primary_10_1016_j_apcata_2015_04_035 crossref_primary_10_1016_S1004_9541_11_60044_X crossref_primary_10_1002_cphc_201700529 crossref_primary_10_1016_j_mcat_2017_04_025 crossref_primary_10_1016_j_jcat_2013_03_013 crossref_primary_10_1016_j_cattod_2019_04_007 crossref_primary_10_1016_j_jcat_2016_02_015 crossref_primary_10_1016_j_mcat_2019_110412 crossref_primary_10_4028_www_scientific_net_MSF_736_120 crossref_primary_10_1016_j_cej_2014_04_079 crossref_primary_10_1016_j_ijhydene_2017_07_106 crossref_primary_10_1039_C6NR09917C crossref_primary_10_1016_j_cattod_2016_12_001 crossref_primary_10_1016_j_mcat_2021_111769 crossref_primary_10_4236_jsbs_2014_42011 crossref_primary_10_1016_j_cej_2011_05_033 crossref_primary_10_1016_j_ijhydene_2014_09_105 crossref_primary_10_1007_s11434_014_0473_5 crossref_primary_10_3390_catal10010091 crossref_primary_10_1016_j_matchemphys_2025_130360 crossref_primary_10_1021_acs_iecr_5b04841 crossref_primary_10_1039_c1jm11461a crossref_primary_10_1016_j_jcat_2012_10_012 crossref_primary_10_1002_cctc_201500245 crossref_primary_10_1007_s11164_015_1992_7 crossref_primary_10_1021_acs_jpcc_2c04869 crossref_primary_10_1021_acs_iecr_2c01366 crossref_primary_10_1016_j_jcou_2020_101295 crossref_primary_10_1002_adfm_201000591 crossref_primary_10_1016_j_ijhydene_2012_09_119 crossref_primary_10_1016_j_apsusc_2020_147469 crossref_primary_10_1016_j_cej_2021_133191 crossref_primary_10_1016_j_fuel_2018_11_107 crossref_primary_10_1016_j_cattod_2017_05_036 crossref_primary_10_1016_j_cej_2024_151198 crossref_primary_10_1007_s10562_010_0399_8 crossref_primary_10_1016_j_rser_2020_109852 crossref_primary_10_1016_j_fuproc_2018_04_030 crossref_primary_10_1002_cssc_201301204 crossref_primary_10_1016_j_jiec_2023_12_003 crossref_primary_10_1016_j_cej_2024_153248 crossref_primary_10_1016_j_ijhydene_2012_02_073 crossref_primary_10_1039_C5CY00607D crossref_primary_10_1002_jccs_201300276 crossref_primary_10_1016_j_apcatb_2021_120210 crossref_primary_10_1021_acs_iecr_8b04712 crossref_primary_10_1002_qua_24418 crossref_primary_10_1016_j_ijhydene_2016_08_200 crossref_primary_10_3390_reactions1020013 crossref_primary_10_1252_jcej_12we169 crossref_primary_10_1016_j_cattod_2010_03_054 crossref_primary_10_1021_acs_iecr_7b05101 crossref_primary_10_1016_j_catcom_2019_105842 crossref_primary_10_1039_c2cs35201j crossref_primary_10_1016_j_ijhydene_2018_01_103 crossref_primary_10_1016_j_ijhydene_2019_03_197 crossref_primary_10_1016_S1872_5813_16_30033_0 crossref_primary_10_1002_aic_15748 crossref_primary_10_1002_cphc_200900139 crossref_primary_10_1016_j_jiec_2020_11_018 crossref_primary_10_1021_acscatal_5b01127 crossref_primary_10_1002_cctc_201402434 crossref_primary_10_1007_s11144_015_0969_2 crossref_primary_10_1016_j_nanoen_2012_07_024 crossref_primary_10_1002_ente_201402113 crossref_primary_10_1016_j_apcatb_2015_05_016 crossref_primary_10_1016_j_fuproc_2010_07_001 crossref_primary_10_1016_j_fuel_2023_129691 crossref_primary_10_1021_acs_chemrev_4c00008 crossref_primary_10_1016_j_ijhydene_2016_07_071 crossref_primary_10_1631_jzus_A1500023 crossref_primary_10_1007_s11814_015_0270_0 crossref_primary_10_1038_s41598_019_52857_4 crossref_primary_10_1016_j_ijhydene_2016_11_119 crossref_primary_10_1016_j_ijhydene_2013_12_163 crossref_primary_10_3390_catal9020200 crossref_primary_10_1016_j_apcatb_2013_10_022 crossref_primary_10_1016_j_apsusc_2023_156738 crossref_primary_10_1016_j_cattod_2019_06_018 crossref_primary_10_1016_j_gce_2020_09_012 crossref_primary_10_1016_j_cej_2018_07_196 crossref_primary_10_1016_j_cej_2012_05_043 crossref_primary_10_1002_cctc_201700880 crossref_primary_10_1007_s10562_009_0248_9 crossref_primary_10_1016_j_apcatb_2014_03_017 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. 2008 INIST-CNRS Copyright © 2008 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2008 Elsevier Inc. – notice: 2008 INIST-CNRS – notice: Copyright © 2008 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.jcat.2008.06.024 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 377 |
ExternalDocumentID | 1574889501 20628512 10_1016_j_jcat_2008_06_024 S0021951708002522 |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH AFJKZ AGQPQ AIGII APXCP BNPGV EFKBS IQODW |
ID | FETCH-LOGICAL-c423t-a9bef3fe2c16459641e8af74dcb88c7121effa6796b9b5c9c85ad6d864bbbbd53 |
IEDL.DBID | .~1 |
ISSN | 0021-9517 |
IngestDate | Mon Jul 14 07:05:18 EDT 2025 Mon Jul 21 09:15:43 EDT 2025 Thu Apr 24 22:55:47 EDT 2025 Tue Jul 01 03:13:48 EDT 2025 Fri Feb 23 02:35:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bimetallic catalysts TPD Sorbitol reforming Microcalorimetry TPR Sorbitol Binary compound Reducibility Hydrogen Active site Reforming Liquid phase Supported catalyst Particle Promoter Chemical reduction Oxidation Catalyst support Mixed catalyst Binding Rod Alloys Desorption Heterogeneous catalysis Transmission electron microscopy Thermodynamic properties Alumina Heat of adsorption |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-a9bef3fe2c16459641e8af74dcb88c7121effa6796b9b5c9c85ad6d864bbbbd53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 195452023 |
PQPubID | 32080 |
PageCount | 12 |
ParticipantIDs | proquest_journals_195452023 pascalfrancis_primary_20628512 crossref_citationtrail_10_1016_j_jcat_2008_06_024 crossref_primary_10_1016_j_jcat_2008_06_024 elsevier_sciencedirect_doi_10_1016_j_jcat_2008_06_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-09-10 |
PublicationDateYYYYMMDD | 2008-09-10 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: San Diego |
PublicationTitle | Journal of catalysis |
PublicationYear | 2008 |
Publisher | Elsevier Inc Elsevier Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier BV |
References | Raab, Lercher, Goodwin, Shyu (bib015) 1990; 122 Hwu, Eng, Chen (bib020) 2002; 124 Raab, Lercher (bib016) 1992; 75 Baker, Dumesic, Chludzinski (bib013) 1986; 101 Rynkowski, Paryjczak, Lenik, Farbotko, Goralski (bib010) 1995; 91 Huber, Shabaker, Evans, Dumesic (bib022) 2006; 62 Eischens, Pliskin (bib036) 1958; 10 Mukainakano, Li, Kado, Miyazawa, Okumura, Miyao, Naito, Kunimori, Tomishige (bib030) 2007; 318 Salagre, Fierro, Medina, Sueiras (bib028) 1996; 106 Cortright, Davda, Dumesic (bib003) 2002; 418 Costa, Lopes, Lemos, Ribeiro (bib033) 1999; 144 Arishtirova, Pawelec, Nikolov, Fierro, Damyanova (bib008) 2007; 91 Ehrlich (bib034) 1961; 35 Greeley, Mavrikakis (bib039) 2006; 111 Rynkowski, Paryjczak, Lenik (bib026) 1993; 106 Rieck, Bell (bib037) 1987; 103 Dominguez, Vazquez, Renouprez, Yacaman (bib012) 1982; 75 Shabaker, Davda, Huber, Cortright, Dumesic (bib002) 2003; 215 Hayward, Trapnell (bib027) 1964 Redhead (bib035) 1961; 7 Rynkowski, Paryjczak, Lenik (bib007) 1995; 126 Jentys, McHugh, Haller, Lercher (bib014) 1992; 96 Shu, Murillo, Bosco, Huang, Frenkel, Chen (bib018) 2008; 339 Spiewak, Shen, Dumesic (bib024) 1995; 99 Marecot, Akhachane, Barbier (bib038) 1995; 36 A. Tanksale, Y. Wong, J.N. Beltramini, G.Q. Lu, in: C. Jagadish, G.Q.M. Lu (Eds.), Proc. Int. Conf. on Nanoscience and Nanotechnology, Brisbane, 3–7 July 2006, IEEE, p. 540 Pope, Walker, Moss (bib021) 1973; 28 Davda, Shabaker, Huber, Cortright, Dumesic (bib001) 2003; 43 Tanksale, Wong, Beltramini, Lu (bib004) 2007; 32 Caglayan, Avci, Oensan, Aksoylu (bib006) 2005; 280 Khan, Murillo, Chen (bib019) 2004; 108 Noronha, Baldanza, Monteiro, Aranda, Ordine, Schmal (bib032) 2001; 210 Lanyon, Trapnell (bib025) 1955; 227 Jackson, Glanville, Willis, McLellan, Webb, Moyes, Simpson, Wells, Whyman (bib031) 1993; 139 Ko, Park, Seo, Lee, Lee, Kim (bib017) 2006; 110 Greeley, Mavrikakis (bib040) 2004; 3 Spiewak, Levin, Cortright, Dumesic (bib023) 1996; 100 Rodriguez, Goodman (bib041) 1992; 257 Crisafulli, Scire, Minico, Solarino (bib009) 2002; 225 Wielers, Dings, Van der Grift, Geus (bib011) 1986; 24 Turlier, Praliaud, Moral, Martin, Dalmon (bib029) 1985; 19 |
References_xml | – volume: 106 start-page: 125 year: 1996 ident: bib028 publication-title: J. Mol. Catal. A – volume: 19 start-page: 287 year: 1985 ident: bib029 publication-title: Appl. Catal. – volume: 257 start-page: 897 year: 1992 ident: bib041 publication-title: Science – volume: 75 start-page: 101 year: 1982 ident: bib012 publication-title: J. Catal. – volume: 318 start-page: 252 year: 2007 ident: bib030 publication-title: Appl. Catal. A – volume: 91 start-page: 3481 year: 1995 ident: bib010 publication-title: J. Chem. Soc. Faraday Trans. – volume: 10 start-page: 1 year: 1958 ident: bib036 publication-title: Adv. Catal. – volume: 3 start-page: 810 year: 2004 ident: bib040 publication-title: Nature Mater. – volume: 111 start-page: 52 year: 2006 ident: bib039 publication-title: Catal. Today – reference: A. Tanksale, Y. Wong, J.N. Beltramini, G.Q. Lu, in: C. Jagadish, G.Q.M. Lu (Eds.), Proc. Int. Conf. on Nanoscience and Nanotechnology, Brisbane, 3–7 July 2006, IEEE, p. 540 – volume: 103 start-page: 46 year: 1987 ident: bib037 publication-title: J. Catal. – volume: 43 start-page: 13 year: 2003 ident: bib001 publication-title: Appl. Catal. B – volume: 75 start-page: 71 year: 1992 ident: bib016 publication-title: J. Mol. Catal. – volume: 108 start-page: 15748 year: 2004 ident: bib019 publication-title: J. Phys. Chem. B – volume: 225 start-page: 1 year: 2002 ident: bib009 publication-title: Appl. Catal. A – volume: 418 start-page: 964 year: 2002 ident: bib003 publication-title: Nature – volume: 210 start-page: 275 year: 2001 ident: bib032 publication-title: Appl. Catal. A – volume: 35 start-page: 2165 year: 1961 ident: bib034 publication-title: J. Chem. Phys. – volume: 110 start-page: 275 year: 2006 ident: bib017 publication-title: Catal. Lett. – volume: 62 start-page: 226 year: 2006 ident: bib022 publication-title: Appl. Catal. B – volume: 36 start-page: 37 year: 1995 ident: bib038 publication-title: Catal. Lett. – volume: 227 start-page: 387 year: 1955 ident: bib025 publication-title: Proc. R. Soc. A – volume: 28 start-page: 46 year: 1973 ident: bib021 publication-title: J. Catal. – volume: 122 start-page: 406 year: 1990 ident: bib015 publication-title: J. Catal. – volume: 101 start-page: 169 year: 1986 ident: bib013 publication-title: J. Catal. – volume: 139 start-page: 207 year: 1993 ident: bib031 publication-title: J. Catal. – volume: 280 start-page: 181 year: 2005 ident: bib006 publication-title: Appl. Catal. A – volume: 99 start-page: 17640 year: 1995 ident: bib024 publication-title: J. Phys. Chem. – volume: 7 start-page: 641 year: 1961 ident: bib035 publication-title: Trans. Faraday Soc. – volume: 339 start-page: 169 year: 2008 ident: bib018 publication-title: Appl. Catal. A – volume: 96 start-page: 1324 year: 1992 ident: bib014 publication-title: J. Phys. Chem. – year: 1964 ident: bib027 article-title: Chemisorption – volume: 124 start-page: 702 year: 2002 ident: bib020 publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 17260 year: 1996 ident: bib023 publication-title: J. Phys. Chem. – volume: 91 start-page: 241 year: 2007 ident: bib008 publication-title: React. Kinet. Catal. Lett. – volume: 106 start-page: 73 year: 1993 ident: bib026 publication-title: Appl. Catal. A – volume: 144 start-page: 221 year: 1999 ident: bib033 publication-title: J. Mol. Catal. A – volume: 215 start-page: 344 year: 2003 ident: bib002 publication-title: J. Catal. – volume: 126 start-page: 257 year: 1995 ident: bib007 publication-title: Appl. Catal. A – volume: 24 start-page: 299 year: 1986 ident: bib011 publication-title: Appl. Catal. – volume: 32 start-page: 717 year: 2007 ident: bib004 publication-title: Int. J. Hydrogen Energy |
SSID | ssj0011558 |
Score | 2.3603432 |
Snippet | The promoting effect of Pt and Pd in bimetallic Ni–Pt and Ni–Pd catalysts supported on alumina nano-fibre (Alnf) were tested for the liquid phase reforming of... The promoting effect of Pt and Pd in bimetallic Ni-Pt and Ni-Pd catalysts supported on alumina nano-fibre (Alnf) were tested for the liquid phase reforming of... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 366 |
SubjectTerms | Bimetallic catalysts Catalysis Catalysts Chemistry Exact sciences and technology Experiments General and physical chemistry Hydrogen Microcalorimetry Nanomaterials Sorbitol reforming Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry TPD TPR |
Title | Effect of Pt and Pd promoter on Ni supported catalysts—A TPR/TPO/TPD and microcalorimetry study |
URI | https://dx.doi.org/10.1016/j.jcat.2008.06.024 https://www.proquest.com/docview/195452023 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PSxwxFH6IHmwporbFrbrk0FsZdzOTzCTHZVXWlm6XsoK3IZMfsKKzgzMeein-Ef6F_iUmmcyiiB4cyGVISMhL3vsI3_sewHdNNM9EmkSKMRGRzKiIpQxH3AY7LXkW68RlI_-eppNz8vOCXqzBuMuFcbTK4Ptbn-69dfgzCLs5qBYLl-NrbxvFmcc8Fka4DHaSuVN-9H9F87CAh7be2FERbO-QONNyvC7d617Lp0yPhjF5LTh9qkRtt8y0tS5euG0fi063YSuASDRq17kDa7rchc1xV7ttFz4-kRn8DKKVKEZLg2YNEqVCM4Uqz8PTN2hZoukC1beVlzhXyD_o_Kub-uHufoTms7-D-eyPbcd-5LUj8NlFLl1ZADsX8vq0X-D89GQ-nkShtEIkLX5qIsELbRKjY4mdmkxKsGbCZETJgjGZ4RhrY4R7Yyp4QSWXjAqVKpaSwn6KJl9hvVyWeg8Q4YorC_ssNCCkGBpBCDVa0JhLMkxE0QPc7Wkug-64K39xlXcEs8vc2SEUxExza4ce_FiNqVrVjTd7085U-bOzk9uw8Oa4_jO7rqaKfWIpjnuw3xk6D1e7zp1EHnVF57-9c9p9-NCRTvDwANabm1t9aJFNU_T90e3Dxujs12T6CC4d-Gs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL2isKCoqigtYkpLvWBXhRkndmIv0bRooDAdVYPEznL8kAa1mYiERTdVP6Jf2C-p7TijIgQLImUT2XLka18fWeeeA3BoiOGFzLNEMyYTUlidsJzhhLvDzihepCbz1cgX03xySc6u6NUajPtaGE-rjLm_y-khW8cvwzibw3qx8DW-brdRXATM42DEM9ggbvt6G4OjXyueh0M8tEvHnovgmsfKmY7kde2v9zpCZX40SslDp9OLWjZuzmxndnEvb4fD6GQbXkYUiY67H30Fa6bagc1xb962A1v_6Qy-BtlpFKOlRbMWyUqjmUZ1IOKZG7Ss0HSBmts6aJxrFG50fjZt8_f3n2M0n30bzmdf3fsp9PzhGXzuJ5feF8CNhYJA7Ru4PPk8H0-S6K2QKAeg2kTy0tjMmlRhLyeTE2yYtAXRqmRMFTjFxlrpL5lKXlLFFaNS55rlpHSPptkurFfLyuwBIlxz7XCfwwaElCMrCaHWSJpyRUaZLAeA-zkVKgqPe_-L76JnmF0LH4foiJkLF4cBfFz1qTvZjUdb0z5U4s7iEe5ceLTfwZ24roZKQ2UpTgew3wdaxL3dCK-RR73r_NsnDvsBNifzi3Nxfjr9sg_PewYKHr2D9fbm1rx3MKctD8Iy_gfVU_n5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Pt+and+Pd+promoter+on+Ni+supported+catalysts-A+TPR%2FTPO%2FTPD+and+microcalorimetry+study&rft.jtitle=Journal+of+catalysis&rft.au=TANKSALE%2C+A&rft.au=BELTRAMINI%2C+J.+N&rft.au=DUMESIC%2C+J.+A&rft.au=LU%2C+G.+Q&rft.date=2008-09-10&rft.pub=Elsevier&rft.issn=0021-9517&rft.volume=258&rft.issue=2&rft.spage=366&rft.epage=377&rft_id=info:doi/10.1016%2Fj.jcat.2008.06.024&rft.externalDBID=n%2Fa&rft.externalDocID=20628512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |