River phosphorus cycling: Separating biotic and abiotic uptake during short-term changes in sewage effluent loading
Medium to small scale point sources continue to threaten river ecosystems through P loadings. The capacity and timescales of within-river processing and P retention are a major factor in how rivers respond to, and protect downstream ecosystems from, elevated concentrations of soluble reactive P (SRP...
Saved in:
Published in | Water research (Oxford) Vol. 44; no. 15; pp. 4425 - 4436 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Medium to small scale point sources continue to threaten river ecosystems through P loadings. The capacity and timescales of within-river processing and P retention are a major factor in how rivers respond to, and protect downstream ecosystems from, elevated concentrations of soluble reactive P (SRP). In this study, the bio-geochemical response of a small river (∼40 km
2 catchment area) was determined before, during and after exposure to a fourteen day pulse of treated sewage effluent using an upstream reach as a control. A wide array of approaches (batch and column simulations to in-situ whole stream metabolism) allowed independent comparison and quantification, of the relative contribution of abiotic and biotic processes in-river P cycling. This enabled, for the first time, separating the relative contributions of algae, bacteria and abiotic sorption without the use of labelled P (radioisotope). An SRP mass balance showed that the ecosystem switched from a P sink (during effluent inputs) to a P source (when effluent flow ceased). However, 65–70% of SRP was retained during the exposure time and remained sequestered two-weeks after-effluent flow ceased. Batch studies treated with biocide gave unrealistic results, but P uptake rates derived by other methods were highly comparable. Downstream of the effluent input, net P uptake by algae, bacteria and sediment (including the biofilm polysaccharide matrix) were 0.2 (±0.1), 0.4 (±0.3), and 1.0 (±0.9) mmol m
−2 day
−1 during effluent exposure. While autotrophic production did not respond to the effluent exposure, heterotrophic production increased by 67% relative to the control and this translated into a 50% increase in biological P uptake rate. Therefore, both biological and abiotic components of stream ecosystems uptake P during exposure to treated sewage effluent P inputs, and maintain a long ‘memory’ of this input in terms of P storage for considerable timescales after loading. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2010.06.014 |