Vasorelaxant Activity of Salvia hispanica L.: Involvement of the Nitric Oxide Pathway in Its Pharmacological Mechanism
Salvia hispanica L., commonly known as chía, and its seeds have been used since ancient times to prepare different beverages. Due to its nutritional content, it is considered a dietary ingredient and has been reported with many health benefits. Chia seed components are helpful in cardiovascular dise...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 17; p. 6225 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
24.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Salvia hispanica L., commonly known as chía, and its seeds have been used since ancient times to prepare different beverages. Due to its nutritional content, it is considered a dietary ingredient and has been reported with many health benefits. Chia seed components are helpful in cardiovascular disease (CVD) by reducing blood pressure, platelet aggregation, cholesterol, and oxidation. Still, its vasodilator effects on the vascular system were not reported yet. The hexanic (HESh), dichloromethanic (DESh), and methanolic (MESh) extracts obtained from chía seeds were evaluated on an aortic ring ex-vivo experimental model. The vasorelaxant efficacy and mechanism of action were determined. Also, phytochemical data was obtained through 13C NMR-based dereplication. The MESh extract showed the highest efficacy (Emax = 87%), and its effect was partially endothelium-dependent. The mechanism of action was determined experimentally, and the vasorelaxant curves were modified in the presence of L-NAME, ODQ, and potassium channel blockers. MESh caused a relaxing effect on KCl 80 mM-induced contraction and was less potent than nifedipine. The CaCl2-induced contraction was significantly decreased compared with the control curve. Phytochemical analysis of MESh suggests the presence of mannitol, previously reported as a vasodilator on aortic rings. Our findings suggest NO-cGMP pathway participation as a vasodilator mechanism of action of S. hispanica seeds; this effect can be attributed, in part, to the mannitol presence. S. hispanica could be used in future research focused on antihypertensive therapies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28176225 |