Spin-dependent Breit-Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure

We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spindependent symmetric Breit-Wigner and the asymmetric Fano resonances ap...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 6; pp. 384 - 391
Main Author 胡丽云 周斌
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/6/067201

Cover

Loading…
More Information
Summary:We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spindependent symmetric Breit-Wigner and the asymmetric Fano resonances appear and that the properties of these two types of resonance peaks are dependent on the amplitudc and the relative phases of the two applicd oscillating fields. The modulation of the spin-polarization efficiency of transmitted electrons by the relative phase is also discussed.
Bibliography:spin orbit coupling, Breit Wigner resonance, Fano resonance
Hu Li-Yun and Zhou Bin(Department of Physics, Hubei University, Wuhan 430062, China)
We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spindependent symmetric Breit-Wigner and the asymmetric Fano resonances appear and that the properties of these two types of resonance peaks are dependent on the amplitudc and the relative phases of the two applicd oscillating fields. The modulation of the spin-polarization efficiency of transmitted electrons by the relative phase is also discussed.
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/6/067201