Spin-dependent Breit-Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure
We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spindependent symmetric Breit-Wigner and the asymmetric Fano resonances ap...
Saved in:
Published in | Chinese physics B Vol. 20; no. 6; pp. 384 - 391 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.06.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/20/6/067201 |
Cover
Loading…
Summary: | We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spindependent symmetric Breit-Wigner and the asymmetric Fano resonances appear and that the properties of these two types of resonance peaks are dependent on the amplitudc and the relative phases of the two applicd oscillating fields. The modulation of the spin-polarization efficiency of transmitted electrons by the relative phase is also discussed. |
---|---|
Bibliography: | spin orbit coupling, Breit Wigner resonance, Fano resonance Hu Li-Yun and Zhou Bin(Department of Physics, Hubei University, Wuhan 430062, China) We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spindependent symmetric Breit-Wigner and the asymmetric Fano resonances appear and that the properties of these two types of resonance peaks are dependent on the amplitudc and the relative phases of the two applicd oscillating fields. The modulation of the spin-polarization efficiency of transmitted electrons by the relative phase is also discussed. 11-5639/O4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/20/6/067201 |