Reconstruction of thermoacoustic emission sources induced by proton irradiation using numerical time reversal

Mapping of dose delivery in proton beam therapy can potentially be performed by analyzing thermoacoustic emissions measured by ultrasound arrays. Here, a method is derived and demonstrated for spatial mapping of thermoacoustic sources using numerical time reversal, simulating re-transmission of meas...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 68; no. 2; pp. 25003 - 25019
Main Authors Mast, T Douglas, Johnstone, David A, Dumoulin, Charles L, Lamba, Michael A, Patch, Sarah K
Format Journal Article
LanguageEnglish
Published England IOP Publishing 05.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mapping of dose delivery in proton beam therapy can potentially be performed by analyzing thermoacoustic emissions measured by ultrasound arrays. Here, a method is derived and demonstrated for spatial mapping of thermoacoustic sources using numerical time reversal, simulating re-transmission of measured emissions into the medium. Spatial distributions of thermoacoustic emission sources are shown to be approximated by the analytic-signal form of the time-reversed acoustic field, evaluated at the time of the initial proton pulse. Given calibration of the array sensitivity and knowledge of tissue properties, this approach approximately reconstructs the acoustic source amplitude, equal to the product of the time derivative of the radiation dose rate, mass density, and Grüneisen parameter. This approach was implemented using two models for acoustic fields of the array elements, one modeling elements as line sources and the other as rectangular radiators. Thermoacoustic source reconstructions employed previously reported measurements of emissions from proton energy deposition in tissue-mimicking phantoms. For a phantom incorporating a bone layer, reconstructions accounted for the higher sound speed in bone. Dependence of reconstruction quality on array aperture size and signal-to-noise ratio was consistent with previous acoustic simulation studies. Thermoacoustic source distributions were successfully reconstructed from acoustic emissions measured by a linear ultrasound array. Spatial resolution of reconstructions was significantly improved in the azimuthal (array) direction by incorporation of array element diffraction. Source localization agreed well with Monte Carlo simulations of energy deposition, and was improved by incorporating effects of inhomogeneous sound speed. The presented numerical time reversal approach reconstructs thermoacoustic sources from proton beam radiation, based on straightforward processing of acoustic emissions measured by ultrasound arrays. This approach may be useful for ranging and dosimetry of clinical proton beams, if acoustic emissions of sufficient amplitude and bandwidth can be generated by therapeutic proton sources.
Bibliography:PMB-113955.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/acabfc