A novel triple-actuating mechanism of an active air mount for vibration control of precision manufacturing machines: experimental work

With the goal of vibration control and isolation in a clean room, we propose a new type of air mount which consists of pneumatic, electromagnetic (EM), and magnetorheological (MR) actuators. The air mount is installed below a semiconductor manufacturing machine to reduce the adverse effects caused b...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 23; no. 7; pp. 1 - 8
Main Authors Kim, Hyung-Tae, Kim, Cheol-Ho, Choi, Seung-Bok, Moon, Seok-Jun, Song, Won-Gil
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.07.2014
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the goal of vibration control and isolation in a clean room, we propose a new type of air mount which consists of pneumatic, electromagnetic (EM), and magnetorheological (MR) actuators. The air mount is installed below a semiconductor manufacturing machine to reduce the adverse effects caused by unwanted vibration. The proposed mechanism integrates the forces in a parallel connection of the three actuators. The MR part is designed to operate in an air spring in which the EM part is installed. The control logic is developed with a classical method and a switching mode to avoid operational mismatch among the forces developed. Based on extended microprocessors, a portable, embedded controller is installed to execute both nonlinear logic and digital communication with the peripherals. The pneumatic forces constantly support the heavy weight of an upper structure and maintain the level of the air mount. The MR damper handles the transient response, while the EM controller reduces the resonance response, which is switched mutually with a threshold. Vibration is detected by laser displacement sensors which have submicron resolution. The impact test results of three tons load weight demonstrate practical feasibility by showing that the proposed triple-actuating mechanism can reduce the transient response as well as the resonance in the air mount, resulting in accurate motion of the semiconductor manufacturing machine.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0964-1726
1361-665X
DOI:10.1088/0964-1726/23/7/077003