A Framework for the Generation of Realistic Synthetic Cardiac Ultrasound and Magnetic Resonance Imaging Sequences From the Same Virtual Patients

The use of synthetic sequences is one of the most promising tools for advanced in silico evaluation of the quantification of cardiac deformation and strain through 3-D ultrasound (US) and magnetic resonance (MR) imaging. In this paper, we propose the first simulation framework which allows the gener...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 37; no. 3; pp. 741 - 754
Main Authors Zhou, Y., Giffard-Roisin, S., De Craene, M., Camarasu-Pop, S., D'Hooge, J., Alessandrini, M., Friboulet, D., Sermesant, M., Bernard, O.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2017.2708159

Cover

Loading…
More Information
Summary:The use of synthetic sequences is one of the most promising tools for advanced in silico evaluation of the quantification of cardiac deformation and strain through 3-D ultrasound (US) and magnetic resonance (MR) imaging. In this paper, we propose the first simulation framework which allows the generation of realistic 3-D synthetic cardiac US and MR (both cine and tagging) image sequences from the same virtual patient. A state-of-the-art electromechanical (E/M) model was exploited for simulating groundtruth cardiac motion fields ranging from healthy to various pathological cases, including both ventricular dyssynchrony and myocardial ischemia. The E/M groundtruth along with template MR/US images and physical simulators were combined in a unified framework for generating synthetic data. We efficiently merged several warping strategies to keep the full control of myocardial deformations while preserving realistic image texture. In total, we generated 18 virtual patients, each with synthetic 3-D US, cine MR, and tagged MR sequences. The simulated images were evaluated both qualitatively by showing realistic textures and quantitatively by observing myocardial intensity distributions similar to real data. In particular, the US simulation showed a smoother myocardium/background interface than the state-of-the-art. We also assessed the mechanical properties. The pathological subjects were discriminated from the healthy ones by both global indexes (ejection fraction and the global circumferential strain) and regional strain curves. The synthetic database is comprehensive in terms of both pathology and modality, and has a level of realism sufficient for validation purposes. All the 90 sequences are made publicly available to the research community via an open-access database.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2017.2708159