Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island
Time series of optical satellite images acquired at high spatial resolution is a potentially useful source of information for monitoring agricultural practices. However, the information extracted from this source is often hampered by missing acquisitions or uncertain radiometric values. This paper p...
Saved in:
Published in | Remote sensing of environment Vol. 113; no. 10; pp. 2052 - 2061 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
01.10.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Time series of optical satellite images acquired at high spatial resolution is a potentially useful source of information for monitoring agricultural practices. However, the information extracted from this source is often hampered by missing acquisitions or uncertain radiometric values. This paper presents a novel approach that addresses this issue by combining time series of satellite images with information from crop growth modeling and expert knowledge. In a fuzzy framework, a decision support system that combines multi-source information was designed to automatically detect the sugarcane harvest at field scale. The formalism that we used deals with the imprecision of the data and the approximation of expert reasoning. System performances were analyzed using a time series of SPOT-5 images. Results obtained were in substantial agreement with ground truth data: overall accuracy reached 97.80% with stability values exceeding 89.21% for all decisions. The contribution of fuzzy sets to overall accuracy reached 15.08%. The approach outlined in this paper is very promising and could be very useful for other agricultural applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/j.rse.2009.04.009 |