Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication
Directed self-assembly (DSA) of block copolymers (BCPs) on lithographically defined chemically nanopatterned surfaces (or chemical patterns) combines advantages of conventional photolithography and polymeric materials and shows promise for meeting a sufficiently inclusive set of manufacturing constr...
Saved in:
Published in | Progress in polymer science Vol. 54-55; pp. 76 - 127 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Directed self-assembly (DSA) of block copolymers (BCPs) on lithographically defined chemically nanopatterned surfaces (or chemical patterns) combines advantages of conventional photolithography and polymeric materials and shows promise for meeting a sufficiently inclusive set of manufacturing constraints for applications in semiconductors and data storage. DSA attracts attention from both academia and industry and tremendous progress has been achieved in the past decade. This review highlights the development of DSA with an emphasis on efforts toward the integration of block copolymer lithography into the current lithographic process for the fabrication of devices for integrated circuits and bit-patterned media. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0079-6700 1873-1619 |
DOI: | 10.1016/j.progpolymsci.2015.10.006 |