Optimising operation of a biological wastewater treatment application
The objective of this work was to optimize (minimize) the compressed air required to control the rate of ammonia removal in a commercially operated wastewater bioreactor, while still maintaining operation within environmental consent limits. In order to do this, a nonlinear dynamic model based on th...
Saved in:
Published in | ISA transactions Vol. 48; no. 1; pp. 93 - 97 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective of this work was to optimize (minimize) the compressed air required to control the rate of ammonia removal in a commercially operated wastewater bioreactor, while still maintaining operation within environmental consent limits. In order to do this, a nonlinear dynamic model based on the International Association on Water Quality (IAWQ) activated sludge model No. 3 was developed, expressing the nitrification kinetics and hydraulic dynamics of the system. From this model a steady state representation of the plant was derived, and simulated for various load characteristics experienced at the facility, and as a result an optimal load profile was developed for the compressed air distribution to the four aerobic zones. The optimal load profile will ensure that the amount of compressed air required to control the rate of ammonia removal is optimized. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0019-0578 1879-2022 |
DOI: | 10.1016/j.isatra.2008.07.006 |