Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids
This paper reports the preparation of magnetic fluids consisting of magnetite nanoparticles dispersed in an ionic liquid. Different additives were used in order to stabilize the fluids. Colloidal stability was checked by magnetic sedimentation, centrifugation and direct observation. The results of t...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 23; no. 45; pp. 455101 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
16.11.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper reports the preparation of magnetic fluids consisting of magnetite nanoparticles dispersed in an ionic liquid. Different additives were used in order to stabilize the fluids. Colloidal stability was checked by magnetic sedimentation, centrifugation and direct observation. The results of these tests showed that a true ferrofluid was only obtained when the nanoparticles were coated with a layer of surfactant compatible with the ionic liquid. These experiments also showed that stability could not be reached just by electrostatic repulsion. The conclusions of the stability tests were confirmed by calculations of the interparticle energies of interaction. The rheological behaviour of the magnetic fluids upon magnetic field application was also investigated. The experimental magnetoviscous response was fitted by a microstructural model. The model considered that the fluids consisted of two populations of particles, one with a magnetic core diameter of 9 nm, and another with a larger diameter. Upon field application chain-like structures are supposed to be induced. According to estimations particles of 9 nm are too small to aggregate upon field application. The results of the calculations showed that the intensity of the magnetoviscous response depends on the concentration and size of the large particles, and on the thickness of the surfactant layers. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/23/45/455101 |