Chemical–Mechanical Polishing of 4H Silicon Carbide Wafers

4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. En...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 10; no. 13
Main Authors Wang, Wantang, Lu, Xuesong, Wu, Xinke, Zhang, Yiqiang, Wang, Rong, Yang, Deren, Pi, Xiaodong
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.05.2023
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2196-7350
2196-7350
DOI10.1002/admi.202202369

Cover

Loading…
Abstract 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided. Recent progress on the CMP of 4H‐SiC wafers are discussed after a brief overview of the basic properties of 4H‐SiC. Chemical, mechanical, and chemical–mechanical synergistic approaches for the efficiency improvement of CMP are highlighted. By discussing the advantages and disadvantages of the efficiency‐improvement approaches, the challenges of using these approaches in industry are analyzed. Finally, prospects on the development of the CMP of 4H‐SiC wafers are presented.
AbstractList Abstract 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided.
4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided. Recent progress on the CMP of 4H‐SiC wafers are discussed after a brief overview of the basic properties of 4H‐SiC. Chemical, mechanical, and chemical–mechanical synergistic approaches for the efficiency improvement of CMP are highlighted. By discussing the advantages and disadvantages of the efficiency‐improvement approaches, the challenges of using these approaches in industry are analyzed. Finally, prospects on the development of the CMP of 4H‐SiC wafers are presented.
4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided.
Author Wu, Xinke
Yang, Deren
Pi, Xiaodong
Wang, Rong
Wang, Wantang
Zhang, Yiqiang
Lu, Xuesong
Author_xml – sequence: 1
  givenname: Wantang
  orcidid: 0000-0002-2055-0507
  surname: Wang
  fullname: Wang, Wantang
  organization: Zhejiang University
– sequence: 2
  givenname: Xuesong
  surname: Lu
  fullname: Lu, Xuesong
  organization: Zhejiang University
– sequence: 3
  givenname: Xinke
  surname: Wu
  fullname: Wu, Xinke
  organization: Zhejiang University
– sequence: 4
  givenname: Yiqiang
  surname: Zhang
  fullname: Zhang, Yiqiang
  organization: Zhengzhou University
– sequence: 5
  givenname: Rong
  orcidid: 0000-0003-3333-0180
  surname: Wang
  fullname: Wang, Rong
  email: rong_wang@zju.edu.cn
  organization: Zhejiang University
– sequence: 6
  givenname: Deren
  surname: Yang
  fullname: Yang, Deren
  organization: Zhejiang University
– sequence: 7
  givenname: Xiaodong
  surname: Pi
  fullname: Pi, Xiaodong
  email: xdpi@zju.edu.cn
  organization: Zhejiang University
BookMark eNqFkMtKAzEUhoNUUKtb1wOuW5PMTCYBN1IvLSgKKi7DyZnEpkwnNTMi7nwH39AncWq9IYhw4Fz4v5_Dv0V6dagtIbuMDhmlfB_KuR9yyrtKhVojm5wpMSjSnPZ-zBtkp2lmlFLGOOMy3SQHo6mde4Tq9fnl3OIU6uWSXIbKN1Nf3yXBJdk4ufKVx1AnI4jGlza5BWdjs03WHVSN3fnofXJzcnw9Gg_OLk4no8OzAWY8VYPM5VyVyjqkspAGlaHMAM0ploy6jCNKkI5JLDFXmAuRcYcoJBhH8wyLtE8mK98ywEwvop9DfNIBvH4_hHinIbYeK6tVXjAnUu5AyYwVuWLWgLCuS8AYw0zntbfyWsRw_2CbVs_CQ6y79zWXVCohpOCdKlupMIamidZp9C20PtRtBF9pRvUydr2MXX_F3mHDX9jns38CagU8-so-_aPWh0fnk2_2DbQxloY
CitedBy_id crossref_primary_10_1016_j_corsci_2024_112352
crossref_primary_10_3390_c9030062
crossref_primary_10_3390_polym17050613
crossref_primary_10_1016_j_triboint_2024_110109
crossref_primary_10_1080_10426914_2024_2368543
crossref_primary_10_1088_2631_7990_adae67
crossref_primary_10_1007_s11432_024_4046_x
crossref_primary_10_1016_j_ceramint_2024_06_288
crossref_primary_10_1016_j_wear_2024_205503
crossref_primary_10_1039_D4CE00055B
crossref_primary_10_1016_j_mssp_2024_109147
crossref_primary_10_1088_1361_6463_ad8453
crossref_primary_10_1039_D4CP03544E
crossref_primary_10_1016_j_apsusc_2025_162714
crossref_primary_10_1016_j_optlastec_2024_111910
crossref_primary_10_1016_j_apsusc_2025_162317
crossref_primary_10_1016_j_surfin_2025_105949
crossref_primary_10_1007_s44251_025_00072_x
crossref_primary_10_3390_electronics13214143
crossref_primary_10_1039_D4CE01063A
crossref_primary_10_1021_acsphotonics_4c02569
crossref_primary_10_1016_j_ceramint_2024_03_120
crossref_primary_10_1016_j_jcrysgro_2024_127892
crossref_primary_10_1088_1361_6463_ad6e00
crossref_primary_10_1016_j_jmapro_2024_07_108
crossref_primary_10_1016_j_mssp_2024_108920
crossref_primary_10_1016_j_measen_2024_101391
crossref_primary_10_1088_2053_1591_ad0094
crossref_primary_10_1038_s41535_024_00644_4
crossref_primary_10_1016_j_jmatprotec_2024_118387
crossref_primary_10_3390_mi15070900
crossref_primary_10_1016_j_mssp_2024_109014
crossref_primary_10_1063_5_0253608
crossref_primary_10_1038_s44310_024_00031_8
crossref_primary_10_1021_acs_langmuir_3c03228
crossref_primary_10_1134_S1063739723600565
crossref_primary_10_1016_j_precisioneng_2023_12_002
crossref_primary_10_3390_mi16020184
crossref_primary_10_1016_j_mtcomm_2023_107791
crossref_primary_10_1016_j_triboint_2024_109827
Cites_doi 10.1016/j.apsusc.2019.04.037
10.1016/j.ijmachtools.2016.11.007
10.1016/j.jmatprotec.2021.117150
10.3390/cryst12020245
10.1016/j.apsusc.2015.11.062
10.3390/app6030089
10.4028/www.scientific.net/KEM.523-524.24
10.1007/s11664-008-0583-4
10.1007/s00170-015-7023-4
10.1007/s00170-022-08771-7
10.1039/C8CE01700J
10.4271/2016-01-1234
10.1016/j.apsusc.2016.07.155
10.1038/srep08947
10.1016/j.apsusc.2021.150130
10.20965/ijat.2019.p0749
10.1016/j.mee.2007.12.049
10.4028/www.scientific.net/AMR.126-128.423
10.20965/ijat.2018.p0160
10.1016/j.cej.2012.11.007
10.1016/j.electacta.2018.03.184
10.1016/j.apsusc.2017.10.159
10.1149/2162-8777/abf16e
10.1016/j.wear.2021.203649
10.1016/j.elecom.2015.01.002
10.1016/j.proeng.2011.11.2673
10.1007/s12541-021-00494-1
10.1016/j.precisioneng.2020.03.015
10.1149/1.1564110
10.4028/www.scientific.net/MSF.740-742.435
10.1364/OE.21.014780
10.1016/j.diamond.2017.05.003
10.1080/10426914.2020.1772481
10.1063/1.4821068
10.1088/1674-4926/42/11/112802
10.1016/j.ijmachtools.2016.11.002
10.1016/j.cap.2012.02.016
10.1016/j.powtec.2021.08.016
10.1007/s11664-006-0218-6
10.1039/D1RA04604G
10.1016/j.apsusc.2019.144131
10.20965/ijat.2018.p0187
10.1109/TIE.2017.2652401
10.4028/www.scientific.net/MSF.740-742.847
10.1016/j.mssp.2022.107124
10.1063/1.5031185
10.1016/j.jallcom.2018.11.416
10.1016/j.apsusc.2014.08.011
10.1016/j.surfcoat.2014.03.044
10.1016/j.ceramint.2021.11.301
10.1007/s10854-013-1519-1
10.1016/j.apsusc.2020.147963
10.20965/ijat.2018.p0145
10.1117/12.758612
10.4028/www.scientific.net/KEM.516.186
10.1177/0954405414563556
10.1007/s11664-001-0111-2
10.1016/j.precisioneng.2017.12.011
10.1143/JJAP.51.05EF05
10.4028/www.scientific.net/MSF.600-603.819
10.1149/2.0031911jss
10.1080/10426914.2017.1364855
10.1149/2.0041704jss
10.4028/www.scientific.net/MSF.778-780.722
10.1016/j.jmapro.2021.08.059
10.1016/j.triboint.2015.02.013
10.1016/j.precisioneng.2017.02.011
10.1177/1350650119864243
10.1016/j.procir.2014.04.035
10.1007/s40544-013-0026-y
10.1016/j.ijmachtools.2019.103431
10.1016/j.ceramint.2021.01.188
10.1007/s00170-019-04223-x
10.4028/www.scientific.net/MSF.740-742.514
10.1143/JJAP.50.08JG05
10.1007/s12541-018-0206-9
10.1016/j.precisioneng.2021.04.012
10.1002/9781118313534
10.1088/1674-4926/43/10/102801
10.1016/j.ijmachtools.2003.12.006
10.1016/j.precisioneng.2016.09.009
10.1016/j.apsusc.2020.147859
10.1016/j.surfin.2020.100730
10.1063/1.4868487
10.4028/www.scientific.net/MSF.527-529.1091
10.1016/j.diamond.2021.108700
10.1016/j.triboint.2021.107241
10.1016/j.jcrysgro.2019.125379
10.1149/2.0061709jss
10.4028/www.scientific.net/AMR.126-128.429
10.1016/j.apsusc.2015.10.158
10.1063/1.356439
10.1016/j.cirp.2014.03.043
10.1177/0954405417718595
10.1016/S0924-0136(02)00604-0
10.1016/j.apsusc.2014.04.048
10.1016/j.procir.2017.12.131
10.1149/1.1837711
10.1149/2162-8777/ab8b71
10.1149/2162-8777/abf726
10.1007/s10825-016-0942-y
10.1109/SIU.2014.6830281
10.1007/s00170-012-4430-7
10.1016/j.apsusc.2021.151676
10.1016/j.wear.2016.01.014
10.1002/1521-3951(199707)202:1<35::AID-PSSB35>3.0.CO;2-8
10.1007/s11664-004-0207-6
10.4028/www.scientific.net/MSF.778-780.587
10.1016/j.jece.2020.104954
10.4028/www.scientific.net/MSF.457-460.805
10.1149/2.0131805jss
10.1016/S0022-0248(03)01045-5
10.1080/10408436.2014.992585
10.1016/j.cirp.2013.03.028
10.1016/j.elecom.2019.01.012
10.1016/j.apsusc.2016.06.193
10.1016/j.apcatb.2012.05.036
10.1016/j.apcatb.2016.04.003
10.1016/j.jmatprotec.2007.04.091
10.1088/1674-4926/33/10/106003
10.1007/s00170-022-09241-w
10.1143/JJAP.51.046501
10.1016/j.jallcom.2017.11.112
10.1149/2162-8777/abedd2
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
L6V
L7M
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/admi.202202369
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9571f632fa98417591eba6ef196bbb1b
10_1002_admi_202202369
ADMI202202369
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 62274143; 62204216
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 226‐2022‐00200
– fundername: Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou
  funderid: TD2022012
– fundername: “Pioneer” and “Leading Goose” R&D Program of Zhejiang
  funderid: 2022C01021
– fundername: Natural Science Foundation of China for Innovative Research Group
  funderid: 61721005
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BENPR
BGLVJ
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7S
MEWTI
MY~
M~E
O9-
P2W
PDBOC
PTHSS
R.K
ROL
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
AIURR
BFHJK
CITATION
EJD
PHGZM
PHGZT
SUPJJ
7SR
7U5
8BQ
8FD
8FE
8FG
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
D1I
DWQXO
JG9
L6V
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4239-4f529d9efc0878bc9b01ba050cd10f42cc8a8f18cdc59c56642fcc68abf054c73
IEDL.DBID BENPR
ISSN 2196-7350
IngestDate Wed Aug 27 01:31:58 EDT 2025
Fri Jul 25 12:07:41 EDT 2025
Tue Jul 01 00:39:51 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Wed Jan 22 16:20:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4239-4f529d9efc0878bc9b01ba050cd10f42cc8a8f18cdc59c56642fcc68abf054c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3333-0180
0000-0002-2055-0507
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202202369
PQID 2808966862
PQPubID 2034582
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9571f632fa98417591eba6ef196bbb1b
proquest_journals_2808966862
crossref_citationtrail_10_1002_admi_202202369
crossref_primary_10_1002_admi_202202369
wiley_primary_10_1002_admi_202202369_ADMI202202369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2014; 778
2013; 1
2006; 35
2019; 13
2013; 62
2006; 37
2003; 150
2021; 164
2013; 740–742
2015; 80
2021; 562
2016; 389
2012; 125
2021; 72
2014; 251
2012; 12
2022; 575
2021; 70
2018; 7
2004; 33
2012; 497
2019; 21
2017; 76
1997; 144
2015; 87
1987
2021; 393
2020; 04
2014; 13
2018; 736
2018; 33
1994; 75
2020; 07
2014; 316
2021; 47
2019; 8
2004; 44
2017; 64
2021; 42
2015; 52
2014; 778–780
2019; 105
2013; 103
2013; 224
2013; 740
2020; 35
2012; 33
2019; 100
2016; 11
2016; 350–351
2016; 5
1997; 202
2018; 19
2016; 6
2014; 307
2019; 48
2021; 537
2021; 536
2022; 12
2009; 600–603
2002; 129
2015; 359
2020; 21
2018; 12
2001; 30
2012; 516
2018; 09
2017; 6
2019; 51
2021; 22
2020; 64
2013; 21
2017; 47
2013; 24
2017; 49
2018; 123
2006; 527–529
2021; 120
2015; 229
2014; 63
2010; 126–128
2017; 114
2017; 115
2012; 51
2019; 484
2022; 120
2015; 40
2015; 44
2020; 9
2019; 234
2021; 472
2011; 24
2020; 531
2019; 233
2009; 600
2016; 194
2021; 9
2022; 152
2015; 5
2012; 523–524
2012
2007
2020; 502
2022; 48
2004
2022; 43
2019; 782
2019; 144
2003; 253
2016; 361
2018; 68
2021; 10
2008; 6798
2018; 271
2021; 11
2017; 15
2007; 192
2017; 16
2019; 01
2018; 434
2019; 03
2011; 50
2019; 07
2018; 52
2021; 295
2014
2018; 50
2008; 85
2014; 72
2009; 38
2014; 104
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
Yan H. (e_1_2_7_69_1) 2019; 51
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_123_1
Lu J. (e_1_2_7_68_1) 2019; 48
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_146_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_131_1
e_1_2_7_135_1
Fan‐ning M. (e_1_2_7_100_1) 2019; 07
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
Ping Z. (e_1_2_7_136_1) 2020; 07
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
Jia‐yun D. (e_1_2_7_120_1) 2020; 04
Lai‐jun X. (e_1_2_7_107_1) 2016; 11
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
Yin T. (e_1_2_7_43_1) 2021; 10
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_132_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_85_1
Qiusheng Y. (e_1_2_7_88_1) 2018; 09
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_118_1
Sato K. (e_1_2_7_6_1) 2021; 10
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
Su J. X. (e_1_2_7_78_1) 2012; 497
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
An J. H. (e_1_2_7_145_1) 2009; 600
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_137_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
Ye Z. (e_1_2_7_62_1) 2017; 15
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_141_1
Liang Q. R. (e_1_2_7_80_1) 2015; 44
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
Jiabin L. (e_1_2_7_63_1) 2019; 03
Guo‐mei C. (e_1_2_7_79_1) 2019; 01
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
Zhai W. (e_1_2_7_21_1) 2018; 50
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
Agarwal A. K. (e_1_2_7_12_1) 2004
e_1_2_7_134_1
Juan C. X.‐f. L. I. (e_1_2_7_27_1) 2006; 37
e_1_2_7_138_1
References_xml – volume: 10
  start-page: 402
  year: 2021
  publication-title: IEEJ J. Ind. Appl.
– volume: 07
  start-page: 253
  year: 2020
  publication-title: Surf. Technol.
– volume: 316
  start-page: 643
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 9
  year: 2021
  publication-title: J. Environ. Chem. Eng.
– volume: 42
  year: 2021
  publication-title: J. Semicond.
– volume: 80
  start-page: 1511
  year: 2015
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 16
  start-page: 190
  year: 2017
  publication-title: J. Comput. Electron.
– volume: 778–780
  start-page: 722
  year: 2014
  publication-title: Mater. Sci. Forum
– volume: 120
  start-page: 7157
  year: 2022
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 35
  start-page: 1279
  year: 2020
  publication-title: Mater. Manuf. Processes
– volume: 1
  start-page: 279
  year: 2013
  publication-title: Friction
– year: 2014
– volume: 75
  start-page: 850
  year: 1994
  publication-title: J. Appl. Phys.
– volume: 144
  start-page: 161
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 233
  start-page: 69
  year: 2019
  publication-title: Proc. Inst. Mech. Eng., Part B
– volume: 123
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 782
  start-page: 709
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 48
  start-page: 7570
  year: 2022
  publication-title: Ceram. Int.
– volume: 48
  start-page: 148
  year: 2019
  publication-title: Surf. Technol.
– volume: 19
  start-page: 1773
  year: 2018
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 6
  start-page: 89
  year: 2016
  publication-title: Appl. Sci.
– volume: 64
  start-page: 91
  year: 2020
  publication-title: Precis. Eng.
– volume: 37
  start-page: 70
  year: 2006
  publication-title: J. Funct. Mater.
– volume: 295
  year: 2021
  publication-title: J. Mater. Process. Technol.
– volume: 234
  start-page: 401
  year: 2019
  publication-title: Proc. Inst. Mech. Eng., Part B
– volume: 144
  year: 2019
  publication-title: Int. J. Mach. Tool Manuf.
– volume: 12
  start-page: 245
  year: 2022
  publication-title: Crystals
– volume: 736
  start-page: 276
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 536
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 120
  start-page: 1415
  year: 2022
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 359
  start-page: 664
  year: 2015
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 1200
  year: 2019
  publication-title: CrystEngComm
– start-page: 526
  year: 2014
  end-page: 528
– volume: 389
  start-page: 311
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 152
  year: 2022
  publication-title: Mater. Sci. Semicond. Process.
– year: 1987
– volume: 740–742
  start-page: 435
  year: 2013
  publication-title: Mater. Sci. Forum
– volume: 202
  start-page: 35
  year: 1997
  publication-title: Phys. Status Solidi B
– start-page: 271
  year: 2007
– volume: 150
  start-page: G314
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 49
  start-page: 235
  year: 2017
  publication-title: Precis. Eng.
– volume: 253
  start-page: 340
  year: 2003
  publication-title: J. Cryst. Growth
– volume: 575
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 271
  start-page: 666
  year: 2018
  publication-title: Electrochim. Acta
– volume: 62
  start-page: 575
  year: 2013
  publication-title: CIRP Ann.
– volume: 5
  start-page: 8947
  year: 2015
  publication-title: Sci. Rep.
– volume: 70
  start-page: 350
  year: 2021
  publication-title: J. Manuf. Processes
– volume: 35
  start-page: L11
  year: 2006
  publication-title: J. Electron. Mater.
– volume: 24
  start-page: 441
  year: 2011
  publication-title: Proc. Eng.
– volume: 350–351
  start-page: 99
  year: 2016
  publication-title: Wear
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 677
  year: 2019
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 251
  start-page: 48
  year: 2014
  publication-title: Surf. Coat. Technol.
– volume: 115
  start-page: 38
  year: 2017
  publication-title: Int. J. Mach. Tool Manuf.
– volume: 6798
  year: 2008
– volume: 33
  start-page: 481
  year: 2004
  publication-title: J. Electron. Mater.
– volume: 64
  start-page: 8193
  year: 2017
  publication-title: IEEE Trans. Ind. Electron.
– volume: 21
  year: 2013
  publication-title: Opt. Express
– volume: 24
  start-page: 5040
  year: 2013
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 51
  year: 2012
  publication-title: Jpn. J. Appl. Phys.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 523–524
  start-page: 24
  year: 2012
  publication-title: Key Eng. Mater.
– volume: 47
  start-page: 353
  year: 2017
  publication-title: Precis. Eng.
– volume: 516
  start-page: 186
  year: 2012
  publication-title: Key. Eng. Mater.
– volume: 9
  year: 2020
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 307
  start-page: 414
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 600
  start-page: 831
  year: 2009
  publication-title: Mater. Sci. Forum
– volume: 502
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 10
  year: 2021
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 72
  start-page: 102
  year: 2021
  publication-title: Precis. Eng.
– volume: 105
  start-page: 1519
  year: 2019
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 126–128
  start-page: 423
  year: 2010
  publication-title: Adv. Mater. Res.
– volume: 5
  start-page: 294
  year: 2016
  publication-title: SAE Int. J. Altern. Powertrains
– volume: 12
  start-page: 187
  year: 2018
  publication-title: Int. J. Autom. Technol.
– volume: 12
  start-page: 145
  year: 2018
  publication-title: Int. J. Autom. Technol.
– volume: 09
  start-page: 664
  year: 2018
  publication-title: Semicond. Technol.
– volume: 40
  start-page: 251
  year: 2015
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 434
  start-page: 40
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 07
  start-page: 1
  year: 2019
  publication-title: Surf. Technol.
– volume: 229
  start-page: 170
  year: 2015
  publication-title: Proc. Inst. Mech. Eng., Part B
– volume: 21
  year: 2020
  publication-title: Surf. Interfaces
– volume: 778
  start-page: 587
  year: 2014
  publication-title: Mater. Sci. Forum
– volume: 72
  start-page: 1
  year: 2014
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 87
  start-page: 145
  year: 2015
  publication-title: Tribol. Int.
– volume: 11
  year: 2021
  publication-title: RSC Adv.
– volume: 15
  start-page: 342
  year: 2017
  publication-title: Nanotechnol. Precis. Eng.
– volume: 740
  start-page: 847
  year: 2013
  publication-title: Mater. Sci. Forum
– volume: 11
  start-page: 3855
  year: 2016
  publication-title: Bull. Chin. Ceram. Soc.
– volume: 30
  start-page: 1271
  year: 2001
  publication-title: J. Electron. Mater.
– volume: 44
  start-page: 1741
  year: 2015
  publication-title: J. Synth. Cryst.
– volume: 63
  start-page: 529
  year: 2014
  publication-title: CIRP Ann.
– volume: 194
  start-page: 169
  year: 2016
  publication-title: Appl. Catal., B
– volume: 472
  year: 2021
  publication-title: Wear
– volume: 389
  start-page: 713
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 114
  start-page: 1
  year: 2017
  publication-title: Int. J. Mach. Tool Manuf.
– volume: 497
  start-page: 250
  year: 2012
  publication-title: Ultra‐Precis. Mach. Technol.
– volume: 224
  start-page: 10
  year: 2013
  publication-title: Chem. Eng. J.
– volume: 33
  year: 2012
  publication-title: J. Semicond.
– volume: 100
  start-page: 1
  year: 2019
  publication-title: Electrochem. Commun.
– year: 2004
– volume: 51
  start-page: 115
  year: 2019
  publication-title: J. Harbin Inst. Technol.
– volume: 04
  start-page: 64
  year: 2020
  publication-title: Surf. Technol.
– volume: 52
  start-page: 5
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 12
  start-page: 160
  year: 2018
  publication-title: Int. J. Autom. Technol.
– volume: 120
  year: 2021
  publication-title: Diamond Relat. Mater.
– volume: 562
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 22
  start-page: 951
  year: 2021
  publication-title: Int. J. Precis. Eng. Manuf.
– start-page: 1
  year: 2014
  end-page: 7
– volume: 126–128
  start-page: 429
  year: 2010
  publication-title: Adv. Mater. Res.
– start-page: 85
  year: 2012
– volume: 01
  start-page: 155
  year: 2019
  publication-title: J. Synth. Cryst.
– volume: 38
  start-page: 159
  year: 2009
  publication-title: J. Electron. Mater.
– volume: 03
  start-page: 29
  year: 2019
  publication-title: Diamond Abrasives Eng.
– volume: 47
  year: 2021
  publication-title: Ceram. Int.
– volume: 12
  start-page: S41
  year: 2012
  publication-title: Curr. Appl. Phys.
– volume: 76
  start-page: 123
  year: 2017
  publication-title: Diamond Relat. Mater.
– volume: 50
  start-page: 1
  year: 2018
  publication-title: J. Harbin Inst. Technol.
– volume: 164
  year: 2021
  publication-title: Tribol. Int.
– volume: 125
  start-page: 331
  year: 2012
  publication-title: Appl. Catal., B
– volume: 6
  start-page: P105
  year: 2017
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 531
  year: 2020
  publication-title: J. Cryst. Growth
– volume: 527–529
  start-page: 1091
  year: 2006
  publication-title: Mater. Sci. Forum
– volume: 43
  year: 2022
  publication-title: J. Semicond.
– volume: 537
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 68
  start-page: 746
  year: 2018
  publication-title: Proc. CIRP
– volume: 33
  start-page: 1214
  year: 2018
  publication-title: Mater. Manuf. Processes
– volume: 13
  start-page: 203
  year: 2014
  publication-title: Procedia CIRP
– volume: 740
  start-page: 514
  year: 2013
  publication-title: Mater. Sci. Forum
– volume: 192
  start-page: 276
  year: 2007
  publication-title: J. Mater. Process. Technol.
– volume: 361
  start-page: 18
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 243
  year: 2018
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 52
  start-page: 221
  year: 2018
  publication-title: Precis. Eng.
– volume: 393
  start-page: 630
  year: 2021
  publication-title: Powder Technol.
– volume: 129
  start-page: 171
  year: 2002
  publication-title: J. Mater. Process. Technol.
– volume: 484
  start-page: 534
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 85
  start-page: 682
  year: 2008
  publication-title: Microelectron. Eng.
– volume: 10
  start-page: 6
  year: 2021
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 50
  year: 2011
  publication-title: Jpn. J. Appl. Phys.
– volume: 13
  start-page: 749
  year: 2019
  publication-title: Int. J. Autom. Technol.
– volume: 44
  start-page: 607
  year: 2004
  publication-title: Int. J. Mach. Tool Manuf.
– volume: 600–603
  start-page: 819
  year: 2009
  publication-title: Mater. Sci. Forum
– volume: 6
  start-page: P603
  year: 2017
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 497
  start-page: 250
  year: 2012
  ident: e_1_2_7_78_1
  publication-title: Ultra‐Precis. Mach. Technol.
– volume: 10
  start-page: 402
  year: 2021
  ident: e_1_2_7_6_1
  publication-title: IEEJ J. Ind. Appl.
– ident: e_1_2_7_103_1
  doi: 10.1016/j.apsusc.2019.04.037
– ident: e_1_2_7_104_1
  doi: 10.1016/j.ijmachtools.2016.11.007
– volume: 11
  start-page: 3855
  year: 2016
  ident: e_1_2_7_107_1
  publication-title: Bull. Chin. Ceram. Soc.
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jmatprotec.2021.117150
– ident: e_1_2_7_2_1
  doi: 10.3390/cryst12020245
– ident: e_1_2_7_60_1
  doi: 10.1016/j.apsusc.2015.11.062
– ident: e_1_2_7_111_1
  doi: 10.3390/app6030089
– ident: e_1_2_7_61_1
  doi: 10.4028/www.scientific.net/KEM.523-524.24
– ident: e_1_2_7_38_1
  doi: 10.1007/s11664-008-0583-4
– ident: e_1_2_7_110_1
  doi: 10.1007/s00170-015-7023-4
– ident: e_1_2_7_108_1
  doi: 10.1007/s00170-022-08771-7
– ident: e_1_2_7_55_1
  doi: 10.1039/C8CE01700J
– ident: e_1_2_7_5_1
  doi: 10.4271/2016-01-1234
– ident: e_1_2_7_93_1
  doi: 10.1016/j.apsusc.2016.07.155
– ident: e_1_2_7_82_1
  doi: 10.1038/srep08947
– volume-title: Advances in Silicon Carbide Processing and Applications
  year: 2004
  ident: e_1_2_7_12_1
– ident: e_1_2_7_144_1
  doi: 10.1016/j.apsusc.2021.150130
– ident: e_1_2_7_67_1
  doi: 10.20965/ijat.2019.p0749
– ident: e_1_2_7_92_1
  doi: 10.1016/j.mee.2007.12.049
– ident: e_1_2_7_131_1
  doi: 10.4028/www.scientific.net/AMR.126-128.423
– ident: e_1_2_7_64_1
  doi: 10.20965/ijat.2018.p0160
– ident: e_1_2_7_65_1
  doi: 10.1016/j.cej.2012.11.007
– volume: 01
  start-page: 155
  year: 2019
  ident: e_1_2_7_79_1
  publication-title: J. Synth. Cryst.
– ident: e_1_2_7_116_1
  doi: 10.1016/j.electacta.2018.03.184
– ident: e_1_2_7_50_1
  doi: 10.1016/j.apsusc.2017.10.159
– ident: e_1_2_7_119_1
  doi: 10.1149/2162-8777/abf16e
– ident: e_1_2_7_42_1
  doi: 10.1016/j.wear.2021.203649
– ident: e_1_2_7_115_1
  doi: 10.1016/j.elecom.2015.01.002
– ident: e_1_2_7_76_1
  doi: 10.1016/j.proeng.2011.11.2673
– ident: e_1_2_7_137_1
  doi: 10.1007/s12541-021-00494-1
– ident: e_1_2_7_45_1
  doi: 10.1016/j.precisioneng.2020.03.015
– ident: e_1_2_7_91_1
  doi: 10.1149/1.1564110
– ident: e_1_2_7_129_1
  doi: 10.4028/www.scientific.net/MSF.740-742.435
– ident: e_1_2_7_47_1
  doi: 10.1364/OE.21.014780
– ident: e_1_2_7_101_1
  doi: 10.1016/j.diamond.2017.05.003
– ident: e_1_2_7_20_1
  doi: 10.1080/10426914.2020.1772481
– ident: e_1_2_7_46_1
  doi: 10.1063/1.4821068
– ident: e_1_2_7_3_1
  doi: 10.1088/1674-4926/42/11/112802
– ident: e_1_2_7_124_1
  doi: 10.1016/j.ijmachtools.2016.11.002
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cap.2012.02.016
– ident: e_1_2_7_70_1
– ident: e_1_2_7_87_1
  doi: 10.1016/j.powtec.2021.08.016
– volume: 15
  start-page: 342
  year: 2017
  ident: e_1_2_7_62_1
  publication-title: Nanotechnol. Precis. Eng.
– ident: e_1_2_7_73_1
  doi: 10.1007/s11664-006-0218-6
– ident: e_1_2_7_140_1
  doi: 10.1039/D1RA04604G
– ident: e_1_2_7_53_1
  doi: 10.1016/j.apsusc.2019.144131
– ident: e_1_2_7_52_1
  doi: 10.20965/ijat.2018.p0187
– volume: 04
  start-page: 64
  year: 2020
  ident: e_1_2_7_120_1
  publication-title: Surf. Technol.
– ident: e_1_2_7_1_1
  doi: 10.1109/TIE.2017.2652401
– ident: e_1_2_7_74_1
  doi: 10.4028/www.scientific.net/MSF.740-742.847
– ident: e_1_2_7_36_1
– ident: e_1_2_7_19_1
  doi: 10.1016/j.mssp.2022.107124
– ident: e_1_2_7_17_1
  doi: 10.1063/1.5031185
– ident: e_1_2_7_94_1
  doi: 10.1016/j.jallcom.2018.11.416
– ident: e_1_2_7_30_1
  doi: 10.1016/j.apsusc.2014.08.011
– ident: e_1_2_7_11_1
  doi: 10.1016/j.surfcoat.2014.03.044
– ident: e_1_2_7_143_1
  doi: 10.1016/j.ceramint.2021.11.301
– ident: e_1_2_7_28_1
  doi: 10.1007/s10854-013-1519-1
– ident: e_1_2_7_57_1
  doi: 10.1016/j.apsusc.2020.147963
– ident: e_1_2_7_8_1
  doi: 10.20965/ijat.2018.p0145
– ident: e_1_2_7_85_1
  doi: 10.1117/12.758612
– ident: e_1_2_7_130_1
  doi: 10.4028/www.scientific.net/KEM.516.186
– ident: e_1_2_7_112_1
  doi: 10.1177/0954405414563556
– ident: e_1_2_7_26_1
  doi: 10.1007/s11664-001-0111-2
– ident: e_1_2_7_39_1
  doi: 10.1016/j.precisioneng.2017.12.011
– ident: e_1_2_7_44_1
  doi: 10.1143/JJAP.51.05EF05
– ident: e_1_2_7_146_1
  doi: 10.4028/www.scientific.net/MSF.600-603.819
– ident: e_1_2_7_105_1
  doi: 10.1149/2.0031911jss
– ident: e_1_2_7_58_1
  doi: 10.1080/10426914.2017.1364855
– ident: e_1_2_7_51_1
  doi: 10.1149/2.0041704jss
– ident: e_1_2_7_71_1
  doi: 10.4028/www.scientific.net/MSF.778-780.722
– ident: e_1_2_7_118_1
  doi: 10.1016/j.jmapro.2021.08.059
– ident: e_1_2_7_31_1
  doi: 10.1016/j.triboint.2015.02.013
– ident: e_1_2_7_102_1
  doi: 10.1016/j.precisioneng.2017.02.011
– ident: e_1_2_7_142_1
  doi: 10.1177/1350650119864243
– ident: e_1_2_7_127_1
  doi: 10.1016/j.procir.2014.04.035
– ident: e_1_2_7_23_1
  doi: 10.1007/s40544-013-0026-y
– ident: e_1_2_7_117_1
  doi: 10.1016/j.ijmachtools.2019.103431
– ident: e_1_2_7_54_1
  doi: 10.1016/j.ceramint.2021.01.188
– ident: e_1_2_7_135_1
  doi: 10.1007/s00170-019-04223-x
– ident: e_1_2_7_128_1
  doi: 10.4028/www.scientific.net/MSF.740-742.514
– volume: 07
  start-page: 1
  year: 2019
  ident: e_1_2_7_100_1
  publication-title: Surf. Technol.
– ident: e_1_2_7_132_1
  doi: 10.1143/JJAP.50.08JG05
– volume: 37
  start-page: 70
  year: 2006
  ident: e_1_2_7_27_1
  publication-title: J. Funct. Mater.
– ident: e_1_2_7_24_1
  doi: 10.1007/s12541-018-0206-9
– volume: 51
  start-page: 115
  year: 2019
  ident: e_1_2_7_69_1
  publication-title: J. Harbin Inst. Technol.
– ident: e_1_2_7_41_1
  doi: 10.1016/j.precisioneng.2021.04.012
– ident: e_1_2_7_7_1
  doi: 10.1002/9781118313534
– ident: e_1_2_7_4_1
– volume: 44
  start-page: 1741
  year: 2015
  ident: e_1_2_7_80_1
  publication-title: J. Synth. Cryst.
– ident: e_1_2_7_34_1
  doi: 10.1088/1674-4926/43/10/102801
– ident: e_1_2_7_83_1
  doi: 10.1016/j.ijmachtools.2003.12.006
– ident: e_1_2_7_109_1
  doi: 10.1016/j.precisioneng.2016.09.009
– ident: e_1_2_7_96_1
  doi: 10.1016/j.apsusc.2020.147859
– ident: e_1_2_7_40_1
  doi: 10.1016/j.surfin.2020.100730
– ident: e_1_2_7_49_1
  doi: 10.1063/1.4868487
– ident: e_1_2_7_98_1
  doi: 10.4028/www.scientific.net/MSF.527-529.1091
– ident: e_1_2_7_138_1
  doi: 10.1016/j.diamond.2021.108700
– ident: e_1_2_7_86_1
  doi: 10.1016/j.triboint.2021.107241
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jcrysgro.2019.125379
– ident: e_1_2_7_134_1
  doi: 10.1149/2.0061709jss
– volume: 600
  start-page: 831
  year: 2009
  ident: e_1_2_7_145_1
  publication-title: Mater. Sci. Forum
– ident: e_1_2_7_10_1
  doi: 10.4028/www.scientific.net/AMR.126-128.429
– ident: e_1_2_7_35_1
  doi: 10.1016/j.apsusc.2015.10.158
– ident: e_1_2_7_15_1
  doi: 10.1063/1.356439
– ident: e_1_2_7_126_1
  doi: 10.1016/j.cirp.2014.03.043
– ident: e_1_2_7_113_1
  doi: 10.1177/0954405417718595
– ident: e_1_2_7_75_1
  doi: 10.1016/S0924-0136(02)00604-0
– ident: e_1_2_7_29_1
  doi: 10.1016/j.apsusc.2014.04.048
– ident: e_1_2_7_122_1
  doi: 10.1016/j.procir.2017.12.131
– ident: e_1_2_7_25_1
  doi: 10.1149/1.1837711
– ident: e_1_2_7_106_1
  doi: 10.1149/2162-8777/ab8b71
– ident: e_1_2_7_56_1
  doi: 10.1149/2162-8777/abf726
– ident: e_1_2_7_14_1
  doi: 10.1007/s10825-016-0942-y
– ident: e_1_2_7_18_1
  doi: 10.1109/SIU.2014.6830281
– ident: e_1_2_7_125_1
  doi: 10.1007/s00170-012-4430-7
– volume: 10
  start-page: 6
  year: 2021
  ident: e_1_2_7_43_1
  publication-title: ECS J. Solid State Sci. Technol.
– ident: e_1_2_7_99_1
  doi: 10.1016/j.apsusc.2021.151676
– ident: e_1_2_7_114_1
  doi: 10.1016/j.wear.2016.01.014
– ident: e_1_2_7_22_1
– volume: 03
  start-page: 29
  year: 2019
  ident: e_1_2_7_63_1
  publication-title: Diamond Abrasives Eng.
– ident: e_1_2_7_13_1
  doi: 10.1002/1521-3951(199707)202:1<35::AID-PSSB35>3.0.CO;2-8
– ident: e_1_2_7_123_1
  doi: 10.1007/s11664-004-0207-6
– ident: e_1_2_7_48_1
  doi: 10.4028/www.scientific.net/MSF.778-780.587
– ident: e_1_2_7_121_1
  doi: 10.1016/j.jece.2020.104954
– ident: e_1_2_7_97_1
  doi: 10.4028/www.scientific.net/MSF.457-460.805
– ident: e_1_2_7_89_1
  doi: 10.1149/2.0131805jss
– ident: e_1_2_7_16_1
  doi: 10.1016/S0022-0248(03)01045-5
– volume: 07
  start-page: 253
  year: 2020
  ident: e_1_2_7_136_1
  publication-title: Surf. Technol.
– ident: e_1_2_7_9_1
  doi: 10.1080/10408436.2014.992585
– ident: e_1_2_7_133_1
  doi: 10.1016/j.cirp.2013.03.028
– ident: e_1_2_7_141_1
  doi: 10.1016/j.elecom.2019.01.012
– volume: 48
  start-page: 148
  year: 2019
  ident: e_1_2_7_68_1
  publication-title: Surf. Technol.
– ident: e_1_2_7_81_1
  doi: 10.1016/j.apsusc.2016.06.193
– ident: e_1_2_7_37_1
  doi: 10.1016/j.apcatb.2012.05.036
– volume: 50
  start-page: 1
  year: 2018
  ident: e_1_2_7_21_1
  publication-title: J. Harbin Inst. Technol.
– ident: e_1_2_7_66_1
  doi: 10.1016/j.apcatb.2016.04.003
– ident: e_1_2_7_84_1
  doi: 10.1016/j.jmatprotec.2007.04.091
– ident: e_1_2_7_77_1
  doi: 10.1088/1674-4926/33/10/106003
– ident: e_1_2_7_139_1
  doi: 10.1007/s00170-022-09241-w
– ident: e_1_2_7_72_1
  doi: 10.1143/JJAP.51.046501
– volume: 09
  start-page: 664
  year: 2018
  ident: e_1_2_7_88_1
  publication-title: Semicond. Technol.
– ident: e_1_2_7_95_1
  doi: 10.1016/j.jallcom.2017.11.112
– ident: e_1_2_7_90_1
  doi: 10.1149/2162-8777/abedd2
SSID ssj0001121283
Score 2.496583
SecondaryResourceType review_article
Snippet 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local...
Abstract 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 4H silicon carbide
Chemical-mechanical polishing
Efficiency
Electric vehicles
Manufacturing
material removal rate
Material removal rate (machining)
Performance enhancement
Silicon carbide
Surface properties
Surface roughness
Wafers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SELyIn7haZQ-Cp6VJdrObBS-1WqpQL1rsLSTZBAq1Slvv_gf_ob_ESfaD9SC9eEzIhvAmm3kTJm8QusRJLCUrnBSiu7rBuogkzYsIZ9Lk4CCIKdzb4fFjOpokD1M2bZX6cjlhpTxwCVwvZxmxaUytzHkCvi4nRsnUWNg5Simi3OkLPq8VTPnbFQJHMo9rlUZMe7J4nUE4SF25cJfd3PJCXqz_F8Ns81TvaIZ7aLdiiGG_XNk-2jKLA7TtMzX16hBd10_8vz-_xsa923WN0OWx-duk8M2GySh8ms3BxotwIJdqVpjwRVogekdoMrx7HoyiqgRCpJ0yX5RYBsjlxmrMM650rjBREjPAlGCbUK255JZwXWiWa6BmCbVap1wqC1xMZ_Ex6izeFuYEhZwzbInvlUnMYaoCvk01TZkFTmICFNWQCF3pg7syFXNRKhtT4SAUDYQBumrGv5fKGH-OvHEIN6OcorXvADuLys5ik50D1K3tI6rfbCUoxxziNYjKAkS9zTYsRfRvx_dN6_Q_FnaGdtxsZRJkF3XWyw9zDkRlrS78nvwBGqjhyQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA4-WPAirq44PpY-LOypMUkn3QnsxSezCyMLKnoLSTqRgXFGZvTuf_Af7i-xKt3TOgcR9tYJSWiqUqmvitQXQn5QUVgra6RCxNQN9XVuua5zWtmgwUGwUGPt8OCi7F-LP7fy9l0Vf8MP0SXc0DLSeY0Gbt3s8I001Nb3Q4jvOL7_Xeplsor1tciez8XftywLg6M5cXGCZZZ5VUg6Z26k_HBxiQXPlAj8F1Dne-yanM_5BllvUWN21Kj5K1kK403yJd3e9LMt8mte9v_v-WUQsJYXGxnebUsZpmwSM9HPLocj0Ps4O7FTN6xDdmMjgL9v5Pr87Oqkn7fPIuQe2fpyESVIU4foqaqU89pR5iyVIGdGo-DeK6siU772UnuAa4JH70tlXQR85qtim6yMJ-OwQzKlJI0s9VpRKFiqhrml56WMgFNCj-RzkRjfcobj0xUj07Adc4MiNJ0Ie-RnN_6hYcv4cOQxSrgbhSzXqWMyvTOt0RgtKxbLgkerlQCco1lwtgwRVOmcY65H9uf6Ma3pzQxXVEEMB5Faj_Cks09-xRydDn53rd3_mbRH1vCjuQi5T1Yep0_hAMDKo_ue9uMr8ITeXw
  priority: 102
  providerName: Wiley-Blackwell
Title Chemical–Mechanical Polishing of 4H Silicon Carbide Wafers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202202369
https://www.proquest.com/docview/2808966862
https://doaj.org/article/9571f632fa98417591eba6ef196bbb1b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fSxwxEB-qUuhL6V96rT32QfBpMclm97IgFLVeT-FEqlLfQv6WA3und_a938Fv6CfpTC572oe2LwsJs2GZSSa_zE5-A7DFZGVM7YkKkUI3zPnSiNaXbGBCixsED57uDo9PmtGFPL6sL3PAbZHTKjufmBy1nzmKke8IxRRCcwTgn65vSqoaRX9XcwmNNdhAF6zw8LWxf3hy-vUhysKpv-rYGpnYMf7HBI-FgsqGU5bzo90okfb_gTQf49W04QxfwPOMFIu9pWlfwpMwfQVPU8amW7yG3e6q__2vu3Gg-7vUKCifLUWVilks5Kg4m1yhrafFgZnbiQ_FNxMR8L2Bi-Hh-cGozKUQSkcMfaWMNWqwDdExNVDWtZZxa1iNuuUsSuGcMipy5byrW4cQTYroXKOMjYjJ3KB6C-vT2TS8g0KpmkWeeo2sFA7l8d3GiaaOiE1CD8pOJdplnnAqV3GllwzHQpMK9UqFPdheyV8vGTL-KrlPGl5JEbN16pjNv-u8UHRbD3hsKhFNqyRim5YHa5oQ0VNYa7ntwWZnH52X20I_TI4eiGSz_3yK3vs8Plq13v97zA_wjOSWaY6bsH47_xk-IhS5tX1YE_IUn2r4pZ_nXj8d638DA7DdTg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LblMxEB2VIkQ3FU8RWsALEKur2r6P2BIIlZaQ0KYbWtGd8RNFapOSFCF2_AP_wUfxJczcR1oWwKpLW7Zljcee4_H4DMBTXuTWloGoEMl1w33IrNQh430bNRoIEQP9HR4fVMOj4t1xebwCP7u_MBRW2Z2J9UEdZp585FtScYXQHAH4q7PPGWWNotfVLoVGoxZ78dtXvLItXo52cX2fSTl4c7gzzNqsApknsrusSCVORsfkueor57Xjwlle4jQFT4X0XlmVhPLBl9oj2ilk8r5S1iWEN76f47jX4HqR55p2lBq8vfDpCDQEKu-4IbncsuF0gpdQSUnKKab6ku2rUwT8gWsvo-PavA1uwXqLS9l2o0i3YSVO78CNOj7UL-7Ci45Y4Nf3H-NIv4WpwCh6rvZhsVlixZC9n5ygZk3Zjp27SYjsg00IL-_B0ZWI6D6sTmfT-ACYUiVPoq61Ra5wqIB9Ky-rMiESij3IOpEY37KSU3KME9PwKUtDIjRLEfbg-bL9WcPH8deWr0nCy1bEo11XzOafTLstjS77IlW5TFarApGUFtHZKiY8l5xzwvVgs1sf027uhblQxR7Ies3-MxWzvTseLUsP_z3mE7g5PBzvm_3Rwd4GrFGfJsByE1bP51_iIwRB5-5xrXkMPl61qv8GBBsW-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB5BKhAXVH4qAm3ZAxKnVW3veteWuIS2UQqkQoJA1YvlXxQpJFUa7rxD37BPwti72TaHqhJHW2PLmvF4Po88nwHekbLQmrtIhRhTN8S6XDPpclJrLzFAUO9i7fD4tBpNyk9n_OxWFX_DD9El3KJnpPM6OviFCwc3pKHa_Z7i_Y7F_78r-RC2IlUe7uutwY_J-eQmz0LxcE5snOibVV4XnKy5Gwk72JxkIzYlCv8N3HkbvabwM9yGpy1uzAaNoZ_BAz9_Do_S-017-QI-rAv_r_9ejX2s5o2NLL5uSzmmbBGycpR9m87Q8vPsUC_N1Pnspw4I_17CZHj8_XCUtx8j5Dby9eVl4KhP6YMlohbGSkOo0YSjpikJJbNWaBGosM5yaRGwlSxYWwltAiI0Wxc70Jsv5v4VZEJwEmjq1WUhcCqHYyvLKh4Qqfg-5GuVKNuyhsfPK2aq4TtmKqpQdSrsw_tO_qLhy7hT8mPUcCcVea5Tx2L5S7VuoySvaagKFrQUJSIdSb3RlQ9oSmMMNX3YXdtHtc53qZggAm9xeFfrA0s2u2cpanA0Pular_9n0Ft4_PVoqL6cnH5-A09iX_Mqchd6q-Ufv4fIZWX22835DxcG4sM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical%E2%80%93Mechanical+Polishing+of+4H+Silicon+Carbide+Wafers&rft.jtitle=Advanced+materials+interfaces&rft.au=Wang%2C+Wantang&rft.au=Lu%2C+Xuesong&rft.au=Wu%2C+Xinke&rft.au=Zhang%2C+Yiqiang&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=10&rft.issue=13&rft_id=info:doi/10.1002%2Fadmi.202202369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon