Chemical–Mechanical Polishing of 4H Silicon Carbide Wafers
4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. En...
Saved in:
Published in | Advanced materials interfaces Vol. 10; no. 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.05.2023
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2196-7350 2196-7350 |
DOI | 10.1002/admi.202202369 |
Cover
Loading…
Abstract | 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided.
Recent progress on the CMP of 4H‐SiC wafers are discussed after a brief overview of the basic properties of 4H‐SiC. Chemical, mechanical, and chemical–mechanical synergistic approaches for the efficiency improvement of CMP are highlighted. By discussing the advantages and disadvantages of the efficiency‐improvement approaches, the challenges of using these approaches in industry are analyzed. Finally, prospects on the development of the CMP of 4H‐SiC wafers are presented. |
---|---|
AbstractList | Abstract 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided. 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided. Recent progress on the CMP of 4H‐SiC wafers are discussed after a brief overview of the basic properties of 4H‐SiC. Chemical, mechanical, and chemical–mechanical synergistic approaches for the efficiency improvement of CMP are highlighted. By discussing the advantages and disadvantages of the efficiency‐improvement approaches, the challenges of using these approaches in industry are analyzed. Finally, prospects on the development of the CMP of 4H‐SiC wafers are presented. 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local planarization are cornerstones. Chemical–mechanical polishing (CMP) is the key processing technology in the planarization of 4H‐SiC wafers. Enhancing the performance of CMP is critical to improving the surface quality and reducing the processing cost of 4H‐SiC wafers. In this review, the superior properties of 4H‐SiC and the processing of 4H‐SiC wafers are introduced. The development of CMP with chemical, mechanical, and chemical–mechanical synergistic approaches to improve the performance of CMP is systematically reviewed. The basic principle and processing system of each improvement approach are presented. By comparing the material removal rate of CMP and the surface roughness of CMP‐treated 4H‐SiC wafers, the prospect on the chemical, mechanical, and chemical–mechanical synergistic improvement approaches is finally provided. |
Author | Wu, Xinke Yang, Deren Pi, Xiaodong Wang, Rong Wang, Wantang Zhang, Yiqiang Lu, Xuesong |
Author_xml | – sequence: 1 givenname: Wantang orcidid: 0000-0002-2055-0507 surname: Wang fullname: Wang, Wantang organization: Zhejiang University – sequence: 2 givenname: Xuesong surname: Lu fullname: Lu, Xuesong organization: Zhejiang University – sequence: 3 givenname: Xinke surname: Wu fullname: Wu, Xinke organization: Zhejiang University – sequence: 4 givenname: Yiqiang surname: Zhang fullname: Zhang, Yiqiang organization: Zhengzhou University – sequence: 5 givenname: Rong orcidid: 0000-0003-3333-0180 surname: Wang fullname: Wang, Rong email: rong_wang@zju.edu.cn organization: Zhejiang University – sequence: 6 givenname: Deren surname: Yang fullname: Yang, Deren organization: Zhejiang University – sequence: 7 givenname: Xiaodong surname: Pi fullname: Pi, Xiaodong email: xdpi@zju.edu.cn organization: Zhejiang University |
BookMark | eNqFkMtKAzEUhoNUUKtb1wOuW5PMTCYBN1IvLSgKKi7DyZnEpkwnNTMi7nwH39AncWq9IYhw4Fz4v5_Dv0V6dagtIbuMDhmlfB_KuR9yyrtKhVojm5wpMSjSnPZ-zBtkp2lmlFLGOOMy3SQHo6mde4Tq9fnl3OIU6uWSXIbKN1Nf3yXBJdk4ufKVx1AnI4jGlza5BWdjs03WHVSN3fnofXJzcnw9Gg_OLk4no8OzAWY8VYPM5VyVyjqkspAGlaHMAM0ploy6jCNKkI5JLDFXmAuRcYcoJBhH8wyLtE8mK98ywEwvop9DfNIBvH4_hHinIbYeK6tVXjAnUu5AyYwVuWLWgLCuS8AYw0zntbfyWsRw_2CbVs_CQ6y79zWXVCohpOCdKlupMIamidZp9C20PtRtBF9pRvUydr2MXX_F3mHDX9jns38CagU8-so-_aPWh0fnk2_2DbQxloY |
CitedBy_id | crossref_primary_10_1016_j_corsci_2024_112352 crossref_primary_10_3390_c9030062 crossref_primary_10_3390_polym17050613 crossref_primary_10_1016_j_triboint_2024_110109 crossref_primary_10_1080_10426914_2024_2368543 crossref_primary_10_1088_2631_7990_adae67 crossref_primary_10_1007_s11432_024_4046_x crossref_primary_10_1016_j_ceramint_2024_06_288 crossref_primary_10_1016_j_wear_2024_205503 crossref_primary_10_1039_D4CE00055B crossref_primary_10_1016_j_mssp_2024_109147 crossref_primary_10_1088_1361_6463_ad8453 crossref_primary_10_1039_D4CP03544E crossref_primary_10_1016_j_apsusc_2025_162714 crossref_primary_10_1016_j_optlastec_2024_111910 crossref_primary_10_1016_j_apsusc_2025_162317 crossref_primary_10_1016_j_surfin_2025_105949 crossref_primary_10_1007_s44251_025_00072_x crossref_primary_10_3390_electronics13214143 crossref_primary_10_1039_D4CE01063A crossref_primary_10_1021_acsphotonics_4c02569 crossref_primary_10_1016_j_ceramint_2024_03_120 crossref_primary_10_1016_j_jcrysgro_2024_127892 crossref_primary_10_1088_1361_6463_ad6e00 crossref_primary_10_1016_j_jmapro_2024_07_108 crossref_primary_10_1016_j_mssp_2024_108920 crossref_primary_10_1016_j_measen_2024_101391 crossref_primary_10_1088_2053_1591_ad0094 crossref_primary_10_1038_s41535_024_00644_4 crossref_primary_10_1016_j_jmatprotec_2024_118387 crossref_primary_10_3390_mi15070900 crossref_primary_10_1016_j_mssp_2024_109014 crossref_primary_10_1063_5_0253608 crossref_primary_10_1038_s44310_024_00031_8 crossref_primary_10_1021_acs_langmuir_3c03228 crossref_primary_10_1134_S1063739723600565 crossref_primary_10_1016_j_precisioneng_2023_12_002 crossref_primary_10_3390_mi16020184 crossref_primary_10_1016_j_mtcomm_2023_107791 crossref_primary_10_1016_j_triboint_2024_109827 |
Cites_doi | 10.1016/j.apsusc.2019.04.037 10.1016/j.ijmachtools.2016.11.007 10.1016/j.jmatprotec.2021.117150 10.3390/cryst12020245 10.1016/j.apsusc.2015.11.062 10.3390/app6030089 10.4028/www.scientific.net/KEM.523-524.24 10.1007/s11664-008-0583-4 10.1007/s00170-015-7023-4 10.1007/s00170-022-08771-7 10.1039/C8CE01700J 10.4271/2016-01-1234 10.1016/j.apsusc.2016.07.155 10.1038/srep08947 10.1016/j.apsusc.2021.150130 10.20965/ijat.2019.p0749 10.1016/j.mee.2007.12.049 10.4028/www.scientific.net/AMR.126-128.423 10.20965/ijat.2018.p0160 10.1016/j.cej.2012.11.007 10.1016/j.electacta.2018.03.184 10.1016/j.apsusc.2017.10.159 10.1149/2162-8777/abf16e 10.1016/j.wear.2021.203649 10.1016/j.elecom.2015.01.002 10.1016/j.proeng.2011.11.2673 10.1007/s12541-021-00494-1 10.1016/j.precisioneng.2020.03.015 10.1149/1.1564110 10.4028/www.scientific.net/MSF.740-742.435 10.1364/OE.21.014780 10.1016/j.diamond.2017.05.003 10.1080/10426914.2020.1772481 10.1063/1.4821068 10.1088/1674-4926/42/11/112802 10.1016/j.ijmachtools.2016.11.002 10.1016/j.cap.2012.02.016 10.1016/j.powtec.2021.08.016 10.1007/s11664-006-0218-6 10.1039/D1RA04604G 10.1016/j.apsusc.2019.144131 10.20965/ijat.2018.p0187 10.1109/TIE.2017.2652401 10.4028/www.scientific.net/MSF.740-742.847 10.1016/j.mssp.2022.107124 10.1063/1.5031185 10.1016/j.jallcom.2018.11.416 10.1016/j.apsusc.2014.08.011 10.1016/j.surfcoat.2014.03.044 10.1016/j.ceramint.2021.11.301 10.1007/s10854-013-1519-1 10.1016/j.apsusc.2020.147963 10.20965/ijat.2018.p0145 10.1117/12.758612 10.4028/www.scientific.net/KEM.516.186 10.1177/0954405414563556 10.1007/s11664-001-0111-2 10.1016/j.precisioneng.2017.12.011 10.1143/JJAP.51.05EF05 10.4028/www.scientific.net/MSF.600-603.819 10.1149/2.0031911jss 10.1080/10426914.2017.1364855 10.1149/2.0041704jss 10.4028/www.scientific.net/MSF.778-780.722 10.1016/j.jmapro.2021.08.059 10.1016/j.triboint.2015.02.013 10.1016/j.precisioneng.2017.02.011 10.1177/1350650119864243 10.1016/j.procir.2014.04.035 10.1007/s40544-013-0026-y 10.1016/j.ijmachtools.2019.103431 10.1016/j.ceramint.2021.01.188 10.1007/s00170-019-04223-x 10.4028/www.scientific.net/MSF.740-742.514 10.1143/JJAP.50.08JG05 10.1007/s12541-018-0206-9 10.1016/j.precisioneng.2021.04.012 10.1002/9781118313534 10.1088/1674-4926/43/10/102801 10.1016/j.ijmachtools.2003.12.006 10.1016/j.precisioneng.2016.09.009 10.1016/j.apsusc.2020.147859 10.1016/j.surfin.2020.100730 10.1063/1.4868487 10.4028/www.scientific.net/MSF.527-529.1091 10.1016/j.diamond.2021.108700 10.1016/j.triboint.2021.107241 10.1016/j.jcrysgro.2019.125379 10.1149/2.0061709jss 10.4028/www.scientific.net/AMR.126-128.429 10.1016/j.apsusc.2015.10.158 10.1063/1.356439 10.1016/j.cirp.2014.03.043 10.1177/0954405417718595 10.1016/S0924-0136(02)00604-0 10.1016/j.apsusc.2014.04.048 10.1016/j.procir.2017.12.131 10.1149/1.1837711 10.1149/2162-8777/ab8b71 10.1149/2162-8777/abf726 10.1007/s10825-016-0942-y 10.1109/SIU.2014.6830281 10.1007/s00170-012-4430-7 10.1016/j.apsusc.2021.151676 10.1016/j.wear.2016.01.014 10.1002/1521-3951(199707)202:1<35::AID-PSSB35>3.0.CO;2-8 10.1007/s11664-004-0207-6 10.4028/www.scientific.net/MSF.778-780.587 10.1016/j.jece.2020.104954 10.4028/www.scientific.net/MSF.457-460.805 10.1149/2.0131805jss 10.1016/S0022-0248(03)01045-5 10.1080/10408436.2014.992585 10.1016/j.cirp.2013.03.028 10.1016/j.elecom.2019.01.012 10.1016/j.apsusc.2016.06.193 10.1016/j.apcatb.2012.05.036 10.1016/j.apcatb.2016.04.003 10.1016/j.jmatprotec.2007.04.091 10.1088/1674-4926/33/10/106003 10.1007/s00170-022-09241-w 10.1143/JJAP.51.046501 10.1016/j.jallcom.2017.11.112 10.1149/2162-8777/abedd2 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. L6V L7M M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/admi.202202369 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ProQuest SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9571f632fa98417591eba6ef196bbb1b 10_1002_admi_202202369 ADMI202202369 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 62274143; 62204216 – fundername: Fundamental Research Funds for the Central Universities funderid: 226‐2022‐00200 – fundername: Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou funderid: TD2022012 – fundername: “Pioneer” and “Leading Goose” R&D Program of Zhejiang funderid: 2022C01021 – fundername: Natural Science Foundation of China for Innovative Research Group funderid: 61721005 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIACR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BENPR BGLVJ BMXJE BRXPI CCPQU DCZOG DPXWK EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7S MEWTI MY~ M~E O9- P2W PDBOC PTHSS R.K ROL WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN AIURR BFHJK CITATION EJD PHGZM PHGZT SUPJJ 7SR 7U5 8BQ 8FD 8FE 8FG AAMMB AEFGJ AGXDD AIDQK AIDYY D1I DWQXO JG9 L6V L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4239-4f529d9efc0878bc9b01ba050cd10f42cc8a8f18cdc59c56642fcc68abf054c73 |
IEDL.DBID | BENPR |
ISSN | 2196-7350 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Fri Jul 25 12:07:41 EDT 2025 Tue Jul 01 00:39:51 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Jan 22 16:20:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4239-4f529d9efc0878bc9b01ba050cd10f42cc8a8f18cdc59c56642fcc68abf054c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3333-0180 0000-0002-2055-0507 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202202369 |
PQID | 2808966862 |
PQPubID | 2034582 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9571f632fa98417591eba6ef196bbb1b proquest_journals_2808966862 crossref_citationtrail_10_1002_admi_202202369 crossref_primary_10_1002_admi_202202369 wiley_primary_10_1002_admi_202202369_ADMI202202369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2014; 778 2013; 1 2006; 35 2019; 13 2013; 62 2006; 37 2003; 150 2021; 164 2013; 740–742 2015; 80 2021; 562 2016; 389 2012; 125 2021; 72 2014; 251 2012; 12 2022; 575 2021; 70 2018; 7 2004; 33 2012; 497 2019; 21 2017; 76 1997; 144 2015; 87 1987 2021; 393 2020; 04 2014; 13 2018; 736 2018; 33 1994; 75 2020; 07 2014; 316 2021; 47 2019; 8 2004; 44 2017; 64 2021; 42 2015; 52 2014; 778–780 2019; 105 2013; 103 2013; 224 2013; 740 2020; 35 2012; 33 2019; 100 2016; 11 2016; 350–351 2016; 5 1997; 202 2018; 19 2016; 6 2014; 307 2019; 48 2021; 537 2021; 536 2022; 12 2009; 600–603 2002; 129 2015; 359 2020; 21 2018; 12 2001; 30 2012; 516 2018; 09 2017; 6 2019; 51 2021; 22 2020; 64 2013; 21 2017; 47 2013; 24 2017; 49 2018; 123 2006; 527–529 2021; 120 2015; 229 2014; 63 2010; 126–128 2017; 114 2017; 115 2012; 51 2019; 484 2022; 120 2015; 40 2015; 44 2020; 9 2019; 234 2021; 472 2011; 24 2020; 531 2019; 233 2009; 600 2016; 194 2021; 9 2022; 152 2015; 5 2012; 523–524 2012 2007 2020; 502 2022; 48 2004 2022; 43 2019; 782 2019; 144 2003; 253 2016; 361 2018; 68 2021; 10 2008; 6798 2018; 271 2021; 11 2017; 15 2007; 192 2017; 16 2019; 01 2018; 434 2019; 03 2011; 50 2019; 07 2018; 52 2021; 295 2014 2018; 50 2008; 85 2014; 72 2009; 38 2014; 104 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 Yan H. (e_1_2_7_69_1) 2019; 51 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_123_1 Lu J. (e_1_2_7_68_1) 2019; 48 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_146_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_131_1 e_1_2_7_135_1 Fan‐ning M. (e_1_2_7_100_1) 2019; 07 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 Ping Z. (e_1_2_7_136_1) 2020; 07 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 Jia‐yun D. (e_1_2_7_120_1) 2020; 04 Lai‐jun X. (e_1_2_7_107_1) 2016; 11 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 Yin T. (e_1_2_7_43_1) 2021; 10 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_132_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_85_1 Qiusheng Y. (e_1_2_7_88_1) 2018; 09 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_118_1 Sato K. (e_1_2_7_6_1) 2021; 10 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 Su J. X. (e_1_2_7_78_1) 2012; 497 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 An J. H. (e_1_2_7_145_1) 2009; 600 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 Ye Z. (e_1_2_7_62_1) 2017; 15 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_141_1 Liang Q. R. (e_1_2_7_80_1) 2015; 44 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 Jiabin L. (e_1_2_7_63_1) 2019; 03 Guo‐mei C. (e_1_2_7_79_1) 2019; 01 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 Zhai W. (e_1_2_7_21_1) 2018; 50 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 Agarwal A. K. (e_1_2_7_12_1) 2004 e_1_2_7_134_1 Juan C. X.‐f. L. I. (e_1_2_7_27_1) 2006; 37 e_1_2_7_138_1 |
References_xml | – volume: 10 start-page: 402 year: 2021 publication-title: IEEJ J. Ind. Appl. – volume: 07 start-page: 253 year: 2020 publication-title: Surf. Technol. – volume: 316 start-page: 643 year: 2014 publication-title: Appl. Surf. Sci. – volume: 9 year: 2021 publication-title: J. Environ. Chem. Eng. – volume: 42 year: 2021 publication-title: J. Semicond. – volume: 80 start-page: 1511 year: 2015 publication-title: Int. J. Adv. Manuf. Technol. – volume: 16 start-page: 190 year: 2017 publication-title: J. Comput. Electron. – volume: 778–780 start-page: 722 year: 2014 publication-title: Mater. Sci. Forum – volume: 120 start-page: 7157 year: 2022 publication-title: Int. J. Adv. Manuf. Technol. – volume: 35 start-page: 1279 year: 2020 publication-title: Mater. Manuf. Processes – volume: 1 start-page: 279 year: 2013 publication-title: Friction – year: 2014 – volume: 75 start-page: 850 year: 1994 publication-title: J. Appl. Phys. – volume: 144 start-page: 161 year: 1997 publication-title: J. Electrochem. Soc. – volume: 233 start-page: 69 year: 2019 publication-title: Proc. Inst. Mech. Eng., Part B – volume: 123 year: 2018 publication-title: J. Appl. Phys. – volume: 782 start-page: 709 year: 2019 publication-title: J. Alloys Compd. – volume: 48 start-page: 7570 year: 2022 publication-title: Ceram. Int. – volume: 48 start-page: 148 year: 2019 publication-title: Surf. Technol. – volume: 19 start-page: 1773 year: 2018 publication-title: Int. J. Precis. Eng. Manuf. – volume: 6 start-page: 89 year: 2016 publication-title: Appl. Sci. – volume: 64 start-page: 91 year: 2020 publication-title: Precis. Eng. – volume: 37 start-page: 70 year: 2006 publication-title: J. Funct. Mater. – volume: 295 year: 2021 publication-title: J. Mater. Process. Technol. – volume: 234 start-page: 401 year: 2019 publication-title: Proc. Inst. Mech. Eng., Part B – volume: 144 year: 2019 publication-title: Int. J. Mach. Tool Manuf. – volume: 12 start-page: 245 year: 2022 publication-title: Crystals – volume: 736 start-page: 276 year: 2018 publication-title: J. Alloys Compd. – volume: 536 year: 2021 publication-title: Appl. Surf. Sci. – volume: 120 start-page: 1415 year: 2022 publication-title: Int. J. Adv. Manuf. Technol. – volume: 359 start-page: 664 year: 2015 publication-title: Appl. Surf. Sci. – volume: 21 start-page: 1200 year: 2019 publication-title: CrystEngComm – start-page: 526 year: 2014 end-page: 528 – volume: 389 start-page: 311 year: 2016 publication-title: Appl. Surf. Sci. – volume: 152 year: 2022 publication-title: Mater. Sci. Semicond. Process. – year: 1987 – volume: 740–742 start-page: 435 year: 2013 publication-title: Mater. Sci. Forum – volume: 202 start-page: 35 year: 1997 publication-title: Phys. Status Solidi B – start-page: 271 year: 2007 – volume: 150 start-page: G314 year: 2003 publication-title: J. Electrochem. Soc. – volume: 49 start-page: 235 year: 2017 publication-title: Precis. Eng. – volume: 253 start-page: 340 year: 2003 publication-title: J. Cryst. Growth – volume: 575 year: 2022 publication-title: Appl. Surf. Sci. – volume: 271 start-page: 666 year: 2018 publication-title: Electrochim. Acta – volume: 62 start-page: 575 year: 2013 publication-title: CIRP Ann. – volume: 5 start-page: 8947 year: 2015 publication-title: Sci. Rep. – volume: 70 start-page: 350 year: 2021 publication-title: J. Manuf. Processes – volume: 35 start-page: L11 year: 2006 publication-title: J. Electron. Mater. – volume: 24 start-page: 441 year: 2011 publication-title: Proc. Eng. – volume: 350–351 start-page: 99 year: 2016 publication-title: Wear – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 677 year: 2019 publication-title: ECS J. Solid State Sci. Technol. – volume: 251 start-page: 48 year: 2014 publication-title: Surf. Coat. Technol. – volume: 115 start-page: 38 year: 2017 publication-title: Int. J. Mach. Tool Manuf. – volume: 6798 year: 2008 – volume: 33 start-page: 481 year: 2004 publication-title: J. Electron. Mater. – volume: 64 start-page: 8193 year: 2017 publication-title: IEEE Trans. Ind. Electron. – volume: 21 year: 2013 publication-title: Opt. Express – volume: 24 start-page: 5040 year: 2013 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 51 year: 2012 publication-title: Jpn. J. Appl. Phys. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 523–524 start-page: 24 year: 2012 publication-title: Key Eng. Mater. – volume: 47 start-page: 353 year: 2017 publication-title: Precis. Eng. – volume: 516 start-page: 186 year: 2012 publication-title: Key. Eng. Mater. – volume: 9 year: 2020 publication-title: ECS J. Solid State Sci. Technol. – volume: 307 start-page: 414 year: 2014 publication-title: Appl. Surf. Sci. – volume: 600 start-page: 831 year: 2009 publication-title: Mater. Sci. Forum – volume: 502 year: 2020 publication-title: Appl. Surf. Sci. – volume: 10 year: 2021 publication-title: ECS J. Solid State Sci. Technol. – volume: 72 start-page: 102 year: 2021 publication-title: Precis. Eng. – volume: 105 start-page: 1519 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 126–128 start-page: 423 year: 2010 publication-title: Adv. Mater. Res. – volume: 5 start-page: 294 year: 2016 publication-title: SAE Int. J. Altern. Powertrains – volume: 12 start-page: 187 year: 2018 publication-title: Int. J. Autom. Technol. – volume: 12 start-page: 145 year: 2018 publication-title: Int. J. Autom. Technol. – volume: 09 start-page: 664 year: 2018 publication-title: Semicond. Technol. – volume: 40 start-page: 251 year: 2015 publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 434 start-page: 40 year: 2018 publication-title: Appl. Surf. Sci. – volume: 07 start-page: 1 year: 2019 publication-title: Surf. Technol. – volume: 229 start-page: 170 year: 2015 publication-title: Proc. Inst. Mech. Eng., Part B – volume: 21 year: 2020 publication-title: Surf. Interfaces – volume: 778 start-page: 587 year: 2014 publication-title: Mater. Sci. Forum – volume: 72 start-page: 1 year: 2014 publication-title: Int. J. Adv. Manuf. Technol. – volume: 87 start-page: 145 year: 2015 publication-title: Tribol. Int. – volume: 11 year: 2021 publication-title: RSC Adv. – volume: 15 start-page: 342 year: 2017 publication-title: Nanotechnol. Precis. Eng. – volume: 740 start-page: 847 year: 2013 publication-title: Mater. Sci. Forum – volume: 11 start-page: 3855 year: 2016 publication-title: Bull. Chin. Ceram. Soc. – volume: 30 start-page: 1271 year: 2001 publication-title: J. Electron. Mater. – volume: 44 start-page: 1741 year: 2015 publication-title: J. Synth. Cryst. – volume: 63 start-page: 529 year: 2014 publication-title: CIRP Ann. – volume: 194 start-page: 169 year: 2016 publication-title: Appl. Catal., B – volume: 472 year: 2021 publication-title: Wear – volume: 389 start-page: 713 year: 2016 publication-title: Appl. Surf. Sci. – volume: 114 start-page: 1 year: 2017 publication-title: Int. J. Mach. Tool Manuf. – volume: 497 start-page: 250 year: 2012 publication-title: Ultra‐Precis. Mach. Technol. – volume: 224 start-page: 10 year: 2013 publication-title: Chem. Eng. J. – volume: 33 year: 2012 publication-title: J. Semicond. – volume: 100 start-page: 1 year: 2019 publication-title: Electrochem. Commun. – year: 2004 – volume: 51 start-page: 115 year: 2019 publication-title: J. Harbin Inst. Technol. – volume: 04 start-page: 64 year: 2020 publication-title: Surf. Technol. – volume: 52 start-page: 5 year: 2015 publication-title: Electrochem. Commun. – volume: 12 start-page: 160 year: 2018 publication-title: Int. J. Autom. Technol. – volume: 120 year: 2021 publication-title: Diamond Relat. Mater. – volume: 562 year: 2021 publication-title: Appl. Surf. Sci. – volume: 22 start-page: 951 year: 2021 publication-title: Int. J. Precis. Eng. Manuf. – start-page: 1 year: 2014 end-page: 7 – volume: 126–128 start-page: 429 year: 2010 publication-title: Adv. Mater. Res. – start-page: 85 year: 2012 – volume: 01 start-page: 155 year: 2019 publication-title: J. Synth. Cryst. – volume: 38 start-page: 159 year: 2009 publication-title: J. Electron. Mater. – volume: 03 start-page: 29 year: 2019 publication-title: Diamond Abrasives Eng. – volume: 47 year: 2021 publication-title: Ceram. Int. – volume: 12 start-page: S41 year: 2012 publication-title: Curr. Appl. Phys. – volume: 76 start-page: 123 year: 2017 publication-title: Diamond Relat. Mater. – volume: 50 start-page: 1 year: 2018 publication-title: J. Harbin Inst. Technol. – volume: 164 year: 2021 publication-title: Tribol. Int. – volume: 125 start-page: 331 year: 2012 publication-title: Appl. Catal., B – volume: 6 start-page: P105 year: 2017 publication-title: ECS J. Solid State Sci. Technol. – volume: 531 year: 2020 publication-title: J. Cryst. Growth – volume: 527–529 start-page: 1091 year: 2006 publication-title: Mater. Sci. Forum – volume: 43 year: 2022 publication-title: J. Semicond. – volume: 537 year: 2021 publication-title: Appl. Surf. Sci. – volume: 68 start-page: 746 year: 2018 publication-title: Proc. CIRP – volume: 33 start-page: 1214 year: 2018 publication-title: Mater. Manuf. Processes – volume: 13 start-page: 203 year: 2014 publication-title: Procedia CIRP – volume: 740 start-page: 514 year: 2013 publication-title: Mater. Sci. Forum – volume: 192 start-page: 276 year: 2007 publication-title: J. Mater. Process. Technol. – volume: 361 start-page: 18 year: 2016 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 243 year: 2018 publication-title: ECS J. Solid State Sci. Technol. – volume: 52 start-page: 221 year: 2018 publication-title: Precis. Eng. – volume: 393 start-page: 630 year: 2021 publication-title: Powder Technol. – volume: 129 start-page: 171 year: 2002 publication-title: J. Mater. Process. Technol. – volume: 484 start-page: 534 year: 2019 publication-title: Appl. Surf. Sci. – volume: 85 start-page: 682 year: 2008 publication-title: Microelectron. Eng. – volume: 10 start-page: 6 year: 2021 publication-title: ECS J. Solid State Sci. Technol. – volume: 50 year: 2011 publication-title: Jpn. J. Appl. Phys. – volume: 13 start-page: 749 year: 2019 publication-title: Int. J. Autom. Technol. – volume: 44 start-page: 607 year: 2004 publication-title: Int. J. Mach. Tool Manuf. – volume: 600–603 start-page: 819 year: 2009 publication-title: Mater. Sci. Forum – volume: 6 start-page: P603 year: 2017 publication-title: ECS J. Solid State Sci. Technol. – volume: 497 start-page: 250 year: 2012 ident: e_1_2_7_78_1 publication-title: Ultra‐Precis. Mach. Technol. – volume: 10 start-page: 402 year: 2021 ident: e_1_2_7_6_1 publication-title: IEEJ J. Ind. Appl. – ident: e_1_2_7_103_1 doi: 10.1016/j.apsusc.2019.04.037 – ident: e_1_2_7_104_1 doi: 10.1016/j.ijmachtools.2016.11.007 – volume: 11 start-page: 3855 year: 2016 ident: e_1_2_7_107_1 publication-title: Bull. Chin. Ceram. Soc. – ident: e_1_2_7_32_1 doi: 10.1016/j.jmatprotec.2021.117150 – ident: e_1_2_7_2_1 doi: 10.3390/cryst12020245 – ident: e_1_2_7_60_1 doi: 10.1016/j.apsusc.2015.11.062 – ident: e_1_2_7_111_1 doi: 10.3390/app6030089 – ident: e_1_2_7_61_1 doi: 10.4028/www.scientific.net/KEM.523-524.24 – ident: e_1_2_7_38_1 doi: 10.1007/s11664-008-0583-4 – ident: e_1_2_7_110_1 doi: 10.1007/s00170-015-7023-4 – ident: e_1_2_7_108_1 doi: 10.1007/s00170-022-08771-7 – ident: e_1_2_7_55_1 doi: 10.1039/C8CE01700J – ident: e_1_2_7_5_1 doi: 10.4271/2016-01-1234 – ident: e_1_2_7_93_1 doi: 10.1016/j.apsusc.2016.07.155 – ident: e_1_2_7_82_1 doi: 10.1038/srep08947 – volume-title: Advances in Silicon Carbide Processing and Applications year: 2004 ident: e_1_2_7_12_1 – ident: e_1_2_7_144_1 doi: 10.1016/j.apsusc.2021.150130 – ident: e_1_2_7_67_1 doi: 10.20965/ijat.2019.p0749 – ident: e_1_2_7_92_1 doi: 10.1016/j.mee.2007.12.049 – ident: e_1_2_7_131_1 doi: 10.4028/www.scientific.net/AMR.126-128.423 – ident: e_1_2_7_64_1 doi: 10.20965/ijat.2018.p0160 – ident: e_1_2_7_65_1 doi: 10.1016/j.cej.2012.11.007 – volume: 01 start-page: 155 year: 2019 ident: e_1_2_7_79_1 publication-title: J. Synth. Cryst. – ident: e_1_2_7_116_1 doi: 10.1016/j.electacta.2018.03.184 – ident: e_1_2_7_50_1 doi: 10.1016/j.apsusc.2017.10.159 – ident: e_1_2_7_119_1 doi: 10.1149/2162-8777/abf16e – ident: e_1_2_7_42_1 doi: 10.1016/j.wear.2021.203649 – ident: e_1_2_7_115_1 doi: 10.1016/j.elecom.2015.01.002 – ident: e_1_2_7_76_1 doi: 10.1016/j.proeng.2011.11.2673 – ident: e_1_2_7_137_1 doi: 10.1007/s12541-021-00494-1 – ident: e_1_2_7_45_1 doi: 10.1016/j.precisioneng.2020.03.015 – ident: e_1_2_7_91_1 doi: 10.1149/1.1564110 – ident: e_1_2_7_129_1 doi: 10.4028/www.scientific.net/MSF.740-742.435 – ident: e_1_2_7_47_1 doi: 10.1364/OE.21.014780 – ident: e_1_2_7_101_1 doi: 10.1016/j.diamond.2017.05.003 – ident: e_1_2_7_20_1 doi: 10.1080/10426914.2020.1772481 – ident: e_1_2_7_46_1 doi: 10.1063/1.4821068 – ident: e_1_2_7_3_1 doi: 10.1088/1674-4926/42/11/112802 – ident: e_1_2_7_124_1 doi: 10.1016/j.ijmachtools.2016.11.002 – ident: e_1_2_7_33_1 doi: 10.1016/j.cap.2012.02.016 – ident: e_1_2_7_70_1 – ident: e_1_2_7_87_1 doi: 10.1016/j.powtec.2021.08.016 – volume: 15 start-page: 342 year: 2017 ident: e_1_2_7_62_1 publication-title: Nanotechnol. Precis. Eng. – ident: e_1_2_7_73_1 doi: 10.1007/s11664-006-0218-6 – ident: e_1_2_7_140_1 doi: 10.1039/D1RA04604G – ident: e_1_2_7_53_1 doi: 10.1016/j.apsusc.2019.144131 – ident: e_1_2_7_52_1 doi: 10.20965/ijat.2018.p0187 – volume: 04 start-page: 64 year: 2020 ident: e_1_2_7_120_1 publication-title: Surf. Technol. – ident: e_1_2_7_1_1 doi: 10.1109/TIE.2017.2652401 – ident: e_1_2_7_74_1 doi: 10.4028/www.scientific.net/MSF.740-742.847 – ident: e_1_2_7_36_1 – ident: e_1_2_7_19_1 doi: 10.1016/j.mssp.2022.107124 – ident: e_1_2_7_17_1 doi: 10.1063/1.5031185 – ident: e_1_2_7_94_1 doi: 10.1016/j.jallcom.2018.11.416 – ident: e_1_2_7_30_1 doi: 10.1016/j.apsusc.2014.08.011 – ident: e_1_2_7_11_1 doi: 10.1016/j.surfcoat.2014.03.044 – ident: e_1_2_7_143_1 doi: 10.1016/j.ceramint.2021.11.301 – ident: e_1_2_7_28_1 doi: 10.1007/s10854-013-1519-1 – ident: e_1_2_7_57_1 doi: 10.1016/j.apsusc.2020.147963 – ident: e_1_2_7_8_1 doi: 10.20965/ijat.2018.p0145 – ident: e_1_2_7_85_1 doi: 10.1117/12.758612 – ident: e_1_2_7_130_1 doi: 10.4028/www.scientific.net/KEM.516.186 – ident: e_1_2_7_112_1 doi: 10.1177/0954405414563556 – ident: e_1_2_7_26_1 doi: 10.1007/s11664-001-0111-2 – ident: e_1_2_7_39_1 doi: 10.1016/j.precisioneng.2017.12.011 – ident: e_1_2_7_44_1 doi: 10.1143/JJAP.51.05EF05 – ident: e_1_2_7_146_1 doi: 10.4028/www.scientific.net/MSF.600-603.819 – ident: e_1_2_7_105_1 doi: 10.1149/2.0031911jss – ident: e_1_2_7_58_1 doi: 10.1080/10426914.2017.1364855 – ident: e_1_2_7_51_1 doi: 10.1149/2.0041704jss – ident: e_1_2_7_71_1 doi: 10.4028/www.scientific.net/MSF.778-780.722 – ident: e_1_2_7_118_1 doi: 10.1016/j.jmapro.2021.08.059 – ident: e_1_2_7_31_1 doi: 10.1016/j.triboint.2015.02.013 – ident: e_1_2_7_102_1 doi: 10.1016/j.precisioneng.2017.02.011 – ident: e_1_2_7_142_1 doi: 10.1177/1350650119864243 – ident: e_1_2_7_127_1 doi: 10.1016/j.procir.2014.04.035 – ident: e_1_2_7_23_1 doi: 10.1007/s40544-013-0026-y – ident: e_1_2_7_117_1 doi: 10.1016/j.ijmachtools.2019.103431 – ident: e_1_2_7_54_1 doi: 10.1016/j.ceramint.2021.01.188 – ident: e_1_2_7_135_1 doi: 10.1007/s00170-019-04223-x – ident: e_1_2_7_128_1 doi: 10.4028/www.scientific.net/MSF.740-742.514 – volume: 07 start-page: 1 year: 2019 ident: e_1_2_7_100_1 publication-title: Surf. Technol. – ident: e_1_2_7_132_1 doi: 10.1143/JJAP.50.08JG05 – volume: 37 start-page: 70 year: 2006 ident: e_1_2_7_27_1 publication-title: J. Funct. Mater. – ident: e_1_2_7_24_1 doi: 10.1007/s12541-018-0206-9 – volume: 51 start-page: 115 year: 2019 ident: e_1_2_7_69_1 publication-title: J. Harbin Inst. Technol. – ident: e_1_2_7_41_1 doi: 10.1016/j.precisioneng.2021.04.012 – ident: e_1_2_7_7_1 doi: 10.1002/9781118313534 – ident: e_1_2_7_4_1 – volume: 44 start-page: 1741 year: 2015 ident: e_1_2_7_80_1 publication-title: J. Synth. Cryst. – ident: e_1_2_7_34_1 doi: 10.1088/1674-4926/43/10/102801 – ident: e_1_2_7_83_1 doi: 10.1016/j.ijmachtools.2003.12.006 – ident: e_1_2_7_109_1 doi: 10.1016/j.precisioneng.2016.09.009 – ident: e_1_2_7_96_1 doi: 10.1016/j.apsusc.2020.147859 – ident: e_1_2_7_40_1 doi: 10.1016/j.surfin.2020.100730 – ident: e_1_2_7_49_1 doi: 10.1063/1.4868487 – ident: e_1_2_7_98_1 doi: 10.4028/www.scientific.net/MSF.527-529.1091 – ident: e_1_2_7_138_1 doi: 10.1016/j.diamond.2021.108700 – ident: e_1_2_7_86_1 doi: 10.1016/j.triboint.2021.107241 – ident: e_1_2_7_59_1 doi: 10.1016/j.jcrysgro.2019.125379 – ident: e_1_2_7_134_1 doi: 10.1149/2.0061709jss – volume: 600 start-page: 831 year: 2009 ident: e_1_2_7_145_1 publication-title: Mater. Sci. Forum – ident: e_1_2_7_10_1 doi: 10.4028/www.scientific.net/AMR.126-128.429 – ident: e_1_2_7_35_1 doi: 10.1016/j.apsusc.2015.10.158 – ident: e_1_2_7_15_1 doi: 10.1063/1.356439 – ident: e_1_2_7_126_1 doi: 10.1016/j.cirp.2014.03.043 – ident: e_1_2_7_113_1 doi: 10.1177/0954405417718595 – ident: e_1_2_7_75_1 doi: 10.1016/S0924-0136(02)00604-0 – ident: e_1_2_7_29_1 doi: 10.1016/j.apsusc.2014.04.048 – ident: e_1_2_7_122_1 doi: 10.1016/j.procir.2017.12.131 – ident: e_1_2_7_25_1 doi: 10.1149/1.1837711 – ident: e_1_2_7_106_1 doi: 10.1149/2162-8777/ab8b71 – ident: e_1_2_7_56_1 doi: 10.1149/2162-8777/abf726 – ident: e_1_2_7_14_1 doi: 10.1007/s10825-016-0942-y – ident: e_1_2_7_18_1 doi: 10.1109/SIU.2014.6830281 – ident: e_1_2_7_125_1 doi: 10.1007/s00170-012-4430-7 – volume: 10 start-page: 6 year: 2021 ident: e_1_2_7_43_1 publication-title: ECS J. Solid State Sci. Technol. – ident: e_1_2_7_99_1 doi: 10.1016/j.apsusc.2021.151676 – ident: e_1_2_7_114_1 doi: 10.1016/j.wear.2016.01.014 – ident: e_1_2_7_22_1 – volume: 03 start-page: 29 year: 2019 ident: e_1_2_7_63_1 publication-title: Diamond Abrasives Eng. – ident: e_1_2_7_13_1 doi: 10.1002/1521-3951(199707)202:1<35::AID-PSSB35>3.0.CO;2-8 – ident: e_1_2_7_123_1 doi: 10.1007/s11664-004-0207-6 – ident: e_1_2_7_48_1 doi: 10.4028/www.scientific.net/MSF.778-780.587 – ident: e_1_2_7_121_1 doi: 10.1016/j.jece.2020.104954 – ident: e_1_2_7_97_1 doi: 10.4028/www.scientific.net/MSF.457-460.805 – ident: e_1_2_7_89_1 doi: 10.1149/2.0131805jss – ident: e_1_2_7_16_1 doi: 10.1016/S0022-0248(03)01045-5 – volume: 07 start-page: 253 year: 2020 ident: e_1_2_7_136_1 publication-title: Surf. Technol. – ident: e_1_2_7_9_1 doi: 10.1080/10408436.2014.992585 – ident: e_1_2_7_133_1 doi: 10.1016/j.cirp.2013.03.028 – ident: e_1_2_7_141_1 doi: 10.1016/j.elecom.2019.01.012 – volume: 48 start-page: 148 year: 2019 ident: e_1_2_7_68_1 publication-title: Surf. Technol. – ident: e_1_2_7_81_1 doi: 10.1016/j.apsusc.2016.06.193 – ident: e_1_2_7_37_1 doi: 10.1016/j.apcatb.2012.05.036 – volume: 50 start-page: 1 year: 2018 ident: e_1_2_7_21_1 publication-title: J. Harbin Inst. Technol. – ident: e_1_2_7_66_1 doi: 10.1016/j.apcatb.2016.04.003 – ident: e_1_2_7_84_1 doi: 10.1016/j.jmatprotec.2007.04.091 – ident: e_1_2_7_77_1 doi: 10.1088/1674-4926/33/10/106003 – ident: e_1_2_7_139_1 doi: 10.1007/s00170-022-09241-w – ident: e_1_2_7_72_1 doi: 10.1143/JJAP.51.046501 – volume: 09 start-page: 664 year: 2018 ident: e_1_2_7_88_1 publication-title: Semicond. Technol. – ident: e_1_2_7_95_1 doi: 10.1016/j.jallcom.2017.11.112 – ident: e_1_2_7_90_1 doi: 10.1149/2162-8777/abedd2 |
SSID | ssj0001121283 |
Score | 2.496583 |
SecondaryResourceType | review_article |
Snippet | 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global and local... Abstract 4H silicon carbide (4H‐SiC) holds great promise for high‐power and high‐frequency electronics, in which high‐quality 4H‐SiC wafers with both global... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 4H silicon carbide Chemical-mechanical polishing Efficiency Electric vehicles Manufacturing material removal rate Material removal rate (machining) Performance enhancement Silicon carbide Surface properties Surface roughness Wafers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SELyIn7haZQ-Cp6VJdrObBS-1WqpQL1rsLSTZBAq1Slvv_gf_ob_ESfaD9SC9eEzIhvAmm3kTJm8QusRJLCUrnBSiu7rBuogkzYsIZ9Lk4CCIKdzb4fFjOpokD1M2bZX6cjlhpTxwCVwvZxmxaUytzHkCvi4nRsnUWNg5Simi3OkLPq8VTPnbFQJHMo9rlUZMe7J4nUE4SF25cJfd3PJCXqz_F8Ns81TvaIZ7aLdiiGG_XNk-2jKLA7TtMzX16hBd10_8vz-_xsa923WN0OWx-duk8M2GySh8ms3BxotwIJdqVpjwRVogekdoMrx7HoyiqgRCpJ0yX5RYBsjlxmrMM650rjBREjPAlGCbUK255JZwXWiWa6BmCbVap1wqC1xMZ_Ex6izeFuYEhZwzbInvlUnMYaoCvk01TZkFTmICFNWQCF3pg7syFXNRKhtT4SAUDYQBumrGv5fKGH-OvHEIN6OcorXvADuLys5ik50D1K3tI6rfbCUoxxziNYjKAkS9zTYsRfRvx_dN6_Q_FnaGdtxsZRJkF3XWyw9zDkRlrS78nvwBGqjhyQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA4-WPAirq44PpY-LOypMUkn3QnsxSezCyMLKnoLSTqRgXFGZvTuf_Af7i-xKt3TOgcR9tYJSWiqUqmvitQXQn5QUVgra6RCxNQN9XVuua5zWtmgwUGwUGPt8OCi7F-LP7fy9l0Vf8MP0SXc0DLSeY0Gbt3s8I001Nb3Q4jvOL7_Xeplsor1tciez8XftywLg6M5cXGCZZZ5VUg6Z26k_HBxiQXPlAj8F1Dne-yanM_5BllvUWN21Kj5K1kK403yJd3e9LMt8mte9v_v-WUQsJYXGxnebUsZpmwSM9HPLocj0Ps4O7FTN6xDdmMjgL9v5Pr87Oqkn7fPIuQe2fpyESVIU4foqaqU89pR5iyVIGdGo-DeK6siU772UnuAa4JH70tlXQR85qtim6yMJ-OwQzKlJI0s9VpRKFiqhrml56WMgFNCj-RzkRjfcobj0xUj07Adc4MiNJ0Ie-RnN_6hYcv4cOQxSrgbhSzXqWMyvTOt0RgtKxbLgkerlQCco1lwtgwRVOmcY65H9uf6Ma3pzQxXVEEMB5Faj_Cks09-xRydDn53rd3_mbRH1vCjuQi5T1Yep0_hAMDKo_ue9uMr8ITeXw priority: 102 providerName: Wiley-Blackwell |
Title | Chemical–Mechanical Polishing of 4H Silicon Carbide Wafers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202202369 https://www.proquest.com/docview/2808966862 https://doaj.org/article/9571f632fa98417591eba6ef196bbb1b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fSxwxEB-qUuhL6V96rT32QfBpMclm97IgFLVeT-FEqlLfQv6WA3und_a938Fv6CfpTC572oe2LwsJs2GZSSa_zE5-A7DFZGVM7YkKkUI3zPnSiNaXbGBCixsED57uDo9PmtGFPL6sL3PAbZHTKjufmBy1nzmKke8IxRRCcwTgn65vSqoaRX9XcwmNNdhAF6zw8LWxf3hy-vUhysKpv-rYGpnYMf7HBI-FgsqGU5bzo90okfb_gTQf49W04QxfwPOMFIu9pWlfwpMwfQVPU8amW7yG3e6q__2vu3Gg-7vUKCifLUWVilks5Kg4m1yhrafFgZnbiQ_FNxMR8L2Bi-Hh-cGozKUQSkcMfaWMNWqwDdExNVDWtZZxa1iNuuUsSuGcMipy5byrW4cQTYroXKOMjYjJ3KB6C-vT2TS8g0KpmkWeeo2sFA7l8d3GiaaOiE1CD8pOJdplnnAqV3GllwzHQpMK9UqFPdheyV8vGTL-KrlPGl5JEbN16pjNv-u8UHRbD3hsKhFNqyRim5YHa5oQ0VNYa7ntwWZnH52X20I_TI4eiGSz_3yK3vs8Plq13v97zA_wjOSWaY6bsH47_xk-IhS5tX1YE_IUn2r4pZ_nXj8d638DA7DdTg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LblMxEB2VIkQ3FU8RWsALEKur2r6P2BIIlZaQ0KYbWtGd8RNFapOSFCF2_AP_wUfxJczcR1oWwKpLW7Zljcee4_H4DMBTXuTWloGoEMl1w33IrNQh430bNRoIEQP9HR4fVMOj4t1xebwCP7u_MBRW2Z2J9UEdZp585FtScYXQHAH4q7PPGWWNotfVLoVGoxZ78dtXvLItXo52cX2fSTl4c7gzzNqsApknsrusSCVORsfkueor57Xjwlle4jQFT4X0XlmVhPLBl9oj2ilk8r5S1iWEN76f47jX4HqR55p2lBq8vfDpCDQEKu-4IbncsuF0gpdQSUnKKab6ku2rUwT8gWsvo-PavA1uwXqLS9l2o0i3YSVO78CNOj7UL-7Ci45Y4Nf3H-NIv4WpwCh6rvZhsVlixZC9n5ygZk3Zjp27SYjsg00IL-_B0ZWI6D6sTmfT-ACYUiVPoq61Ra5wqIB9Ky-rMiESij3IOpEY37KSU3KME9PwKUtDIjRLEfbg-bL9WcPH8deWr0nCy1bEo11XzOafTLstjS77IlW5TFarApGUFtHZKiY8l5xzwvVgs1sf027uhblQxR7Ies3-MxWzvTseLUsP_z3mE7g5PBzvm_3Rwd4GrFGfJsByE1bP51_iIwRB5-5xrXkMPl61qv8GBBsW-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB5BKhAXVH4qAm3ZAxKnVW3veteWuIS2UQqkQoJA1YvlXxQpJFUa7rxD37BPwti72TaHqhJHW2PLmvF4Po88nwHekbLQmrtIhRhTN8S6XDPpclJrLzFAUO9i7fD4tBpNyk9n_OxWFX_DD9El3KJnpPM6OviFCwc3pKHa_Z7i_Y7F_78r-RC2IlUe7uutwY_J-eQmz0LxcE5snOibVV4XnKy5Gwk72JxkIzYlCv8N3HkbvabwM9yGpy1uzAaNoZ_BAz9_Do_S-017-QI-rAv_r_9ejX2s5o2NLL5uSzmmbBGycpR9m87Q8vPsUC_N1Pnspw4I_17CZHj8_XCUtx8j5Dby9eVl4KhP6YMlohbGSkOo0YSjpikJJbNWaBGosM5yaRGwlSxYWwltAiI0Wxc70Jsv5v4VZEJwEmjq1WUhcCqHYyvLKh4Qqfg-5GuVKNuyhsfPK2aq4TtmKqpQdSrsw_tO_qLhy7hT8mPUcCcVea5Tx2L5S7VuoySvaagKFrQUJSIdSb3RlQ9oSmMMNX3YXdtHtc53qZggAm9xeFfrA0s2u2cpanA0Pular_9n0Ft4_PVoqL6cnH5-A09iX_Mqchd6q-Ufv4fIZWX22835DxcG4sM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical%E2%80%93Mechanical+Polishing+of+4H+Silicon+Carbide+Wafers&rft.jtitle=Advanced+materials+interfaces&rft.au=Wang%2C+Wantang&rft.au=Lu%2C+Xuesong&rft.au=Wu%2C+Xinke&rft.au=Zhang%2C+Yiqiang&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=10&rft.issue=13&rft_id=info:doi/10.1002%2Fadmi.202202369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |