The Action Control Model for Robotic Fish Using Improved Extreme Learning Machine

To achieve fast and accurate adjustment of robotic fish, this paper proposes state prediction model based on the extreme learning machine optimized by particle swarm algorithm. The proposed model can select desirable actions for robotic fish according to precisely predicted states, “adjusting positi...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2019; no. 2019; pp. 1 - 10
Main Authors Xiong, XiaoMing, Cai, ShuTing, Chen, ShuiBiao, Zhang, XueXi, Hu, Zefeng
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To achieve fast and accurate adjustment of robotic fish, this paper proposes state prediction model based on the extreme learning machine optimized by particle swarm algorithm. The proposed model can select desirable actions for robotic fish according to precisely predicted states, “adjusting position” or “pushing ball” defined herein. Specifically, the extreme learning machine (ELM) is leveraged to predict the state of robotic fish, from the observations of current surrounding environment. As the outputs in ELM are varying with the randomly initialized parameters, particle swarm optimization (PSO) algorithm further improves the accuracy and robustness of the ELM by optimizing initial parameters. The empirical results on URWPGSim2D simulation platform indicate that the robotic fish tends to carry out appropriate actions using the state prediction model so that we can complete the game efficiently. It proves that the proposed model can make best use of the real-time information of robotic fish and water polo and derive fulfilling action strategy in various scenarios, which meet the requirements of motion control for robotic fish.
ISSN:1076-2787
1099-0526
DOI:10.1155/2019/7456031